SPRINGER BRIEFS IN MICROBIOLOGY

Daniele Focosi

SARS-CoV-2 Spike
Protein Convergent
Evolution

Impact of Virus Variants
on Efficacy of COVID-19
Therapeutics and

Vaccines

@ Springer



SpringerBriefs in Microbiology



More information about this series at http://www.springer.com/series/8911


http://www.springer.com/series/8911

Daniele Focosi

SARS-CoV-2 Spike Protein
Convergent Evolution

Impact of Virus Variants on Efficacy
of COVID-19 Therapeutics and Vaccines

@ Springer



Daniele Focosi

North-Western Tuscany Blood Bank

Pisa University Hospital

Azienda Ospedaliera Universitaria Pisana

Pisa, Italy

ISSN 2191-5385 ISSN 2191-5393  (electronic)
SpringerBriefs in Microbiology

ISBN 978-3-030-87323-3 ISBN 978-3-030-87324-0 (eBook)

https://doi.org/10.1007/978-3-030-87324-0

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://orcid.org/0000-0001-8811-195X
https://doi.org/10.1007/978-3-030-87324-0

“Everything existing in the universe is the
fruit of chance and necessity” (Democritus)



To my only loves, my wife Emona and my
children Enea and Anna.



About This Book

The Spike protein represents the target of vaccines and antibody-based therapeutics
(convalescent plasma, hyperimmune sera and monoclonal antibodies) for COVID-19.
Spike mutations can affect the efficacy of those treatments. Continuous monitoring of
such mutations is necessary to reshape the inventory of therapeutics. Different phylo-
genetic nomenclatures have been used by different entities (e.g., NextStrain, GISAID,
Pangolin, Public Health England, and WHO) for the circulating SARS-CoV-2 strains.
The Spike genes have undergone many missense mutations and deletions, the most
dangerous for immune escape being the ones within the ACE2 receptor-binding
domain (RBD) (such as K417N/T, N439K, L452R, T478K, E484K/Q, and N501Y)
and the furin-cleavage site (such as P681H/R). Convergent evolution has led to over-
lapping combinations of mutations in distant clades. In this book, we focus on the
molecular mechanisms of convergent evolution and summarize in vitro and in vivo
evidences of efficacy for convalescent plasma, currently approved vaccines, and
monoclonal antibodies against SARS-CoV-2 variants of concern (VOC: Alpha, Beta,
Gamma, Delta), variants of interest (VOI: Lambda and Mu) and other strains under
monitoring (Eta, Theta, lota, Zeta, Kappa, Epsilon).
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Chapter 1 ®)
Why the Spike Protein is Relevant e
for COVID-19 Therapeutics

Abstract The Spike protein critical residues focus on the receptor-binding domain,
and more specifically on the receptor binding motif.

Keywords Spike - RBD - RBM

The COVID-19 pandemic driven by SARS-CoV-2 has totaled more than 200 million
cases and 4 million deaths worldwide since December 2020 to September 2021.
Many prophylactic and therapeutic regimens [1, 2] have been tested in randomized
controlled trials (RCT), but to date, only dexamethasone [3] and remdesivir [4] have
shown conclusive evidences of clinical benefit.

The Spike (S) protein drives SARS-CoV-2 infectivity: it is a type I fusion glyco-
protein, responsible for initiating the infection leading to COVID-19. Approximately
35% of the SARS-CoV-2 S glycoprotein consists of carbohydrate [5]. As a feature
unique of SARS-CoV-2, the thick glycan shield covering the S protein is not only
essential for hiding the virus from immune detection, but it also plays multiple func-
tional roles, stabilizing the S prefusion open conformation, which is competent for
binding the ACE2 primary receptor, and gating the open-to-close transitions [6].

ACE2 variants that enhance and reduce Spike binding have been reported,
including two variants with distinct population distributions that enhanced affinity
for Spike. ACE2 p.Ser19Pro (AAG = 0.59 + 0.08 kcal mol™!) is often seen in the
African cohort (AF = 0.003), while p.Lys26Arg (AAG = 0.26 = 0.09 kcal mol-1)
is predominant in the Ashkenazi Jewish (AF = 0.01) and European non-Finnish
(AF = 0.006) cohorts. Carriers of these alleles may be more susceptible to infec-
tion or severe disease, and these variants may influence the global epidemiology of
COVID-19. Three rare ACE2 variants strongly inhibited (p.Glu37Lys, AAG = —
1.33 & 0.15 kcal mol~" and p.Gly352Val, predicted AAG = —1.17 kcal mol™!) or
abolished (p.Asp355Asn) Spike binding and may confer resistance to infection [7].

Each virion harbors 3040 Spike homotrimers on the envelope [8, 9], with each
monomer consisting of two domains (S1 and S2). TMPRSS2, factor Xa and thrombin
are recognized to be important for cleavage activation of SARS-CoV-2 Spike [10].
S1 domain includes the receptor-binding domain (RBD), which incorporates the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 1
D. Focosi, SARS-CoV-2 Spike Protein Convergent Evolution,

SpringerBriefs in Microbiology,

https://doi.org/10.1007/978-3-030-87324-0_1


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87324-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-87324-0_1

2 1 Why the Spike Protein is Relevant for COVID-19 Therapeutics

r & -
51 domain 4 52 domain p
N-terminal L) =
damain (NTD] : receptor-banding 55 fusion-peptide  heptad-repeat 1 heptad-repeat 2 transmembrane
5 Inops domnain (RSD) 5 |f° (HR1) [HR2) T}

2 FIT T 82 86
% & T 156 177 186 246
- @ [®] (] [ e
s penype epitope {aa 417, 455, 456 and
P amo- 72 490)
- G  443-450 loop epitope (a2
\HGQ \V?O. P! w6 \_/' 443-452 and 454-501)
o | | rem | | sb1 | so1 |
(azan msﬁ. ,m;!\ {assr mde& 'sc-m\ul;.véu Feaaan)(FA Cagsi) Fasos ) sasap) w01y
/\ & N ““%f\ /\ S wsorr)

Fig. 1.1 Linearized representation of substitutions and deletions commonly detected in Spike
protein

receptor-binding motif (RBM) (Fig. 1.1). Anti-Spike antibodies can be grouped in
11 clusters according to epitopes or in four classes according to mechanism of action
(Table 1.1). Passive immunotherapies based on anti-Spike neutralizing antibodies
(nAb), which develop in close to 90% of patients and persist for at least S months [11],
have led therapeutics development. nAbs isolated from convalescents preferentially
use specific heavy-chain germline genes, and the two most frequently elicited anti-
body families (IGHV3-53/3-66 and IGHV 1-2) bind the RBD in two different modes
[12]. The first nAb-based manufactured therapeutic has been COVID-19 convales-
cent plasma (CCP), whose efficacy seems promising [13, 14] but for which RCTs
were not conclusive [15]. Antiviral monoclonal nAbs entered the market at the begin-
ning of 2021 [16], and polyclonal IgG formulations (i.e., hyperimmune serum) will
likely follow [17]. All such nAb-based therapeutics and vaccines share a common
drawback: the risk for selective pressure and mutational escape of the Spike protein
[18]. Some of those iatrogenic changes in Spike protein might increase strain trans-
missibility, increase re-infection rates or reduce the efficiency of vaccine campaigns
[19].

Like many other viral surface proteins, the trimeric SARS-CoV-2 Spike (S) protein
isheavily glycosylated with 22 N- and 2 O-glycosites per monomer which are likely to
influence S protein folding and evade host immune response. The S protein glycosites
are highly conserved, and the glycosites at positions 801 and 1194 are essential for
viral entry. In addition, the RBD of S1 and the heptad repeat (HR) regions of S2
contain most of highly conserved sequences [20].
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Chapter 2 ®)
Whole Genome Mutation Rates Geda

Abstract Mutation rates for the entire SARS-CoV-2 genome are lower than for
other pathogenic viruses, and will be affected by mass vaccination.

Keyword Mutation rate

Coronaviruses belong to the order Nidovirales, which is known for viruses with the
longest RNA genome [21]. SARS-CoV-2 genome includes 29,903 ribonucleotides,
which in turn encode 29 proteins. Coronaviruses have a proofreading apparatus [22],
but their genomes nevertheless remain prone to recombination as well as other copy-
choice transcriptional errors [23]. Being relatively recent, the observed genome
diversity is lower than for other RNA viruses [24]. Most proteins exhibit little
mutational variability, the proteins with the highest mutation rate (MR) currently
being Spike, NSP12 [RNA-dependent RNA polymerase (RdRp)] and NSP9c [25].
The average MR of the entire genome has been estimated from the related mouse
hepatitis virus (MHV) at 107° nucleotides per cycle, or 4.83 x 10~ subs/site/year,
which is similar, or slightly lower, than the one observed for other RNA viruses
[26]. Heterogeneous mutation patterns reflect host antiviral mechanisms that are
achieved through apolipoprotein B mRNA editing catalytic polypeptide-like proteins
(APOBEC), adenosine deaminase acting on RNA proteins (ADAR), ZAP proteins
and probable adaptation against reactive oxygen species (ROS) [27]. G — U and C
— U mutations, a well-known result of APOBEC and ROS, are prevalent and occur
many times at the same genome positions along the global SARS-CoV-2 phylogeny
(a phenomenon also known as homoplasy) [28].

While the specific Spike mutation rates will be discussed in the paragraph below, it
is noteworthy that genes other than S mutate in SARS-CoV-2. The global incidence
frequency of N:203K/204R has rose up from nearly zero to 76% to date with a
shrinking from August to November in 2020 but bounced later. The emergence
of B.1.1.7 is associated with the second growth of R203K/G204R mutants. The
203K/204R virus increased the infectivity in a human lung cell line and induced an
enhanced damage to blood vessel of infected hamsters’ lungs [29].
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The diversity of the SARS-CoV-2 lineages is declining at the country level with
increased rate of mass vaccination (r = —0.72). Given that the COVID-19 vaccines
leverage B cell and T cell epitopes, analysis of MR shows neutralizing B cell epitopes
to be particularly more mutated than comparable amino acid clusters (4.3-fold).
Vaccine breakthrough patients harbor viruses with 2.3-fold lower diversity in known
B cell epitopes compared to unvaccinated COVID-19 patients. Vaccinated break-
through patients also displayed fewer COVID-associated complications and preex-
isting conditions relative to unvaccinated COVID-19 patients. COVID-19 vaccines
are fundamentally restricting the evolutionary and antigenic escape pathways acces-
sible to SARS-CoV-2: the societal benefit of mass vaccination may consequently go
far beyond the widely reported mitigation of SARS-CoV-2 infection risk and amelio-
ration of community transmission, to include stemming of rampant viral evolution
[30].



Chapter 3 ®)
Phylogenetic Systems e

Abstract Different nomenclatures have been used, replaced by newer schemes as
soon as the former got too complicated. Reconciliation is mandatory to interpret
early literature.

Keywords Lineages - Clades - PANGOLIN - NextStrain - Public Health England -
GISAID - Variants of concern + Variants of interest + Variants under monitoring

In general, the nomenclature accounting for genetic diversity within a given species
is not regulated by the International Committee on Taxonomy of Viruses (ICTV).
Historically, such low-level genetic diversity has been variably grouped into “clades”,
“subtypes", “genotypes”, “groups” or “lineages”. The main repositories for SARS-
CoV-2 genomic sequences are listed in Table 3.1.

On April 2020, a preliminary work by the London School of Hygiene and Tropical
Medicine on 5300 SARS-CoV-2 sequences from 62 countries identified two clusters
(C1 and C2), further stratified in six main clades (C1, C.1.1, C2, C2.1, C2.1.1 and
C.2.1.2) [31]. Such findings were soon replicated by a Chinese study in June 2020
using only 103 isolates, which first introduced the L and S lineage nomenclature
[32].

The Global Initiative on Sharing All Influenza Data (GISAID) repository
currently includes more than 2.2 million full SARS-CoV-2 genome sequences (most
countries having sequences and shared less than 5% of reported cases, Australia, UK
and Denmark representing brilliant exceptions) and classifies clades with progressive
letters (https://www.gisaid.org/index.php?id=208). In Winter 2020, the main clades
were L, O, V and S. Later, clade G (with the associated D614G mutation in the Spike
protein) emerged followed by the related GR and GH clades [33]. An eight clade
named GV has since been described in the following months.

The Phylogenetic Assignment of Named Global Outbreak LINeages
(PANGOLIN) lineage nomenclature [34, 35] (https://github.com/nextstrain/ncov/
blob/master/docs/naming_clades.md) is one of the two main nomenclature systems.
Pango lineage names comprise an alphabetical prefix and a numerical suffix. The
alphabetical prefix contains Latin characters only which are case insensitive. Each
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dot in the numerical suffix means “descendent of”” and is applied when one ancestor
can be clearly identified. So, lineage B.1.1.7 is the seventh named descendent of
lineage B.1.1, and C.1 is the first named descendent of lineage C. The suffix can
contain a maximum of three hierarchical levels, referred to as the primary, secondary
and tertiary suffixes. In order to avoid four or more suffix levels, a new lineage suffix
is introduced, which acts as an alias. All top-level lineages that are recombinants
have a prefix that begins with X.

NextStrain [36] sources data from public repositories (such as GISAID, NCBI,
ViPR and GitHub) and supports the year-letter dynamic PANGOLIN naming code.
Clades originally needed a frequency of at least 20% globally for two or more months
and are named with the year it was first identified and the first available letter within
the alphabet. The parent clade is reported with the “.”” notation (e.g., 19A.20A.20C
to indicate clade 20C). Then, in January 2021, it was acknowledged that lack of
international travel made it slower for new clades to move past 20% global frequency,
and consequently, two alternative requirements were added: clade reaches >20%
global frequency for two or more months: a clade reaches >30% regional frequency
for two or more months, and a VOC (“variant of concern”) is recognized [37].

A distinct nomenclature for variants has been implemented by Public Health
England (PHE), represented by last two digits of the year, first three capital letters
of the month and progressive (two digits) number of variants reported in such month—
year (e.g., “VOC-21FEB-02").

Finally, at the end of May 2021, considering that the abovementioned systems are
difficult to say and recall and are prone to misreporting, and this had induced people
to call variants by the place where they had been detected (which could be stigma-
tizing and discriminatory for countries that should instead be plauded for their higher
sequencing efforts), the WHO issued a simplified nomenclature based on the Greek
alphabet. Additionally, WHO [moving from the former NextStrain and PHE defi-
nitions of VOC and variants under investigation (VUI)], defined a SARS-CoV-2
isolate a variant of interest (VOI) if, compared to a reference isolate, its genome has
“mutations with established or suspected phenotypic implications, either has been
identified to cause community transmission/multiple COVID-19 cases/clusters, or
has been detected in multiple countries OR is otherwise assessed to be a VOI by WHO
in consultation with the WHO SARS-CoV-2 Virus Evolution Working Group”. A VOC
meets the definition of a VOI but is also “associated with increase transmissibility or
detrimental change in COVID19 epidemiology or increase in virulence or change in
clinical disease presentation or decrease in effectiveness of public health and social
measures or available diagnostics vaccine, or therapeutics”. VOC and VOL. A previ-
ously designated VOI or VOC which has conclusively demonstrated to no longer pose
amajor added risk to global public health compared to other circulating SARS-CoV-2
variants can be reclassified. Alerts for further monitoring are defined as variants with
genetic changes that are suspected to affect virus characteristics with some indication
that it may pose a future risk, but evidence of phenotypic or epidemiological impact
is currently unclear, requiring enhanced monitoring and repeat assessment pending
new evidence. (https://www.who.int/en/activities/tracking/SARS-CoV-2-variants/).
The US CDC, when accepting such classification, defined the most disruptive VOCs


https://www.who.int/en/activities/tracking/SARS-CoV-2-variants/
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as “variant of high consequence” (https://www.cdc.gov/coronavirus/2019-ncov/var
iants/variant-info.html), while the European CDC additionally classified the less
concerning WHO VOI and many more strains as ‘“variants under monitoring
(VUM)”, “detected as signals through epidemic intelligence, rules-based genomic
variant screening, or preliminary scientific evidence” (https://www.ecdc.europa.eu/
en/covid-19/variants-concern).

The different SARS-CoV-2 phylogenies are reconciled in Table 3.2, which details
the separating (barcoding) SNPs. Globally, the year 2020 marked a positive selection
of D614G, S477N (clade 20A.EU2), A222V (20A.EU1) and V1176F SNPs, an
expansion of B.1 clade, especially strain containing Q57H (B.1.X), N:R203K/G204R
(B.1.1.X), T85I (B.1.2-B.1.3), G15S+T428I (C.X) and I120F (D.X) [38]. None of
the SARS-CoV-2 variants described so far has definitively been shown to increase
infection severity; on the contrary, a clade 19B variant with lower severity was
detected in Singapore in the Spring 2020 and then disappeared [39].

Viruses with both S:D614G and RdRp:P323L mutations have lower ratios of
non-synonymous mutations per non-synonymous site to synonymous mutations per
synonymous site (AN/dS) compared to those without the two mutations, particularly
at RdRp coding region and Orf8 gene. Instead, S gene had higher dN/dS ratios in the
mutant genomes. While the S gene was under stronger negative selection in wild-
type genomes during the early stages, it is almost at equal levels between mutant
and wild-type genomes in the later stages. Instead, RdRp is under stronger overall
negative selection in the mutant genomes, particularly during the early stages [40].
It has been estimated that, as of March 2021, the current SARS-CoV-2 variants of
concern (VOC, see below) have sampled only 36% of the possible Spikes changes
which have occurred historically in Sarbecovirus evolution [41].


https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html
https://www.ecdc.europa.eu/en/covid-19/variants-concern
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Chapter 4

Mechanism of Immune Escape: Single e
Nucleotide Mutations,

Insertion/Deletions and Recombination

Abstract Single nucleotide mutations as well as insertion and deletions occur
randomly in the genome. Super-infection (co-infection) predisposes to recombina-
tion.

Keywords SNP - Insertion + Deletion - Co-infection * Super-infection *
Recombination

The main forces of viral evolution, i.e., mutation, drift, recombination and selection,
all operate within hosts [42], and the global SARS-CoV-2 population is actually a
meta-population consisting of the viruses in all the infected hosts. Advantageous
mutations can occur in individual patients and then expand at a global scale.

Single nucleotide polymorphisms (SNP) can lead to missense mutations
(summarized in Table 3.2). As of February 2021, there were 2592 distinct SARS-
CoV-2 variants [43]. 95% of patients show within-host diversity, mostly due to muta-
tional hot spots [44]. High-confidence subclonal variants were found in about 15.1%
of the NGS data sets, which might indicate co-infection from different strains and/or
intra-host evolution [43]. SNPs are rare because of proofreading efficiency of the
SARS-CoV-2 RNA-dependent RNA polymerase (nspl2) and the error-correcting
exonuclease protein non-structural protein 14 (nspl4): P203L mutation in nspl4
almost doubles the genomic MR (from 20 to 36 SNPs/year) [45].

There were as many as 420 unique indel positions and 447 unique combinations
of indels. Despite their high frequency, indels resulted in only minimal alteration,
including both gain and loss, of N-glycosylation sites. Indels and point mutations
are positively correlated, and sequences with indels have significantly more point
mutations [46].

Deletions drive sudden antigenic drift and compromise binding of nAb [47]:
Deletions in the N-terminal domain (such as AH69/AV70 and AY 144) are increas-
ingly prevalent [48]. 90% of deletions maintain the reading frame and fall within
four regions (RDRs) within the NTD at positions 60—75 (RDR1), 139-146 (RDR2),
210-212 (RDR3) and 242-248 (RDR4) of the S protein [47]. E.g., SARS-CoV-2
lineages circulating in Brazil with mutations of concern in the RBD independently
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acquired convergent deletions and insertions in the NTD of the S protein, which
altered the NTD antigenic-supersite and other predicted epitopes at this region [49].
The BriS A variant, originally identified as a viral subpopulation by passaging SARS-
CoV-2 isolate hCoV-19/England/02/2020, has an in-frame 8 amino acid deletion in
Spike encompassing the furin recognition motif and S1/S2 cleavage site (amino acids
679-687 NSPRRARSY, replaced by 1) [50].

Garushyants et al. identified 141 unique inserts of different lengths. These inserts
reflect actual virus variance rather than sequencing errors. Two principal mechanisms
appear to account for the inserts in the SARS-CoV-2 genomes: polymerase slippage
and template switch that might be associated with the synthesis of subgenomic RNAs.
Inserts in the Spike glycoprotein can affect its antigenic properties and thus have to be
monitored. At least, two inserts in the N-terminal domain of the Spike (ins246DSWG
and ins15ATLRI) that were first detected in January 2021 are predicted to lead to
escape from nAbs, whereas other inserts might result in escape from T cell immunity
[51].

There are putative [44] and in vivo [52] evidences of super-infection or co-
infection from different SARS-CoV-2 strains. While studies relying on linkage dise-
quilibrium have identified that recombination occurs at very low levels [52, 53] or
does not occur at all [32, 54-58], a new method detected multiple recombination
events using relatively small samples [59]. Nevertheless, recombination rates across
the genome of the human seasonal coronaviruses 229E, OC43 and NL63 vary with
rates of adaptation [60]. Jackson et al. presented evidence for multiple independent
origins of recombinant SARS-CoV-2 sampled from late 2020 and early 2021 in the
United Kingdom. Their genomes carried SNP and deletions that were characteristic
of the B.1.1.7 VOC, but lacked the full complement of lineage-defining mutations.
Instead, the rest of their genomes share contiguous genetic variation with non-B.1.1.7
viruses circulating in the same geographic area at the same time as the recombinants.
In four instances, there was evidence for onward transmission of a recombinant-origin
virus, including one transmission cluster of 45 sequenced cases over the course of
two months. The inferred genomic locations of recombination breakpoints suggest
that every community-transmitted recombinant virus inherited its Spike region from
a B.1.1.7 parental virus, consistent with a transmission advantage for B.1.1.7’s set
of mutations [61]. Turakhia et al identified 606 recombination events by investi-
gating a 1.6M sample tree: approximately 2.7% of sequenced SARS-CoV-2 genomes
have recombinant ancestry, and recombination breakpoints occur disproportion-
ately in the Spike protein region. The coinfection indices of GISAID20May11 and
GISAID21Apr1 (2021) datasets were 16 and 34, respectively: there was a linear rela-
tionship between the coinfection index and the coinfected variant numbers, and cases
were coinfected with 2.20 and 3.42 SARS-CoV-2 variants on average. A large study
identified 53 (~0.18%) co-infection events (including with 2 Delta sublineages) out
of 29,993 samples: apart from 52 co-infections with 2 SARS-CoV-2 lineages, one
sample with co-infections of 3 SARS-CoV-2 lineages was firstly identified. Another
study identified coinfections around 0.61% of all samples investigated (9 cases).

Through RNA-seq, chimeric host-virus reads can be detected in the infected
cells. But further analysis using mixed libraries of infected cells and uninfected
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zebrafish embryos demonstrates that these reads are falsely generated during library
construction. In support, whole genome sequencing also does not identify the exis-
tence of chimeric reads in their corresponding regions. Therefore, the evidence for
SARS-CoV-2’s integration into host genome is lacking [62].

All the major VOCs harbor the deletion in ORF1ab (dell11288-11296 (3675-3677
SGF) [63] and have signals of positive selection in Spike (convergent for 16 sites and
non-convergent for five sites) [64]. Given consistent convergent evolution, we will
separately discuss individual mutations first and will later focus on variants. It should
not be forgotten that among the deleterious variants (impacting mortality), NSP3 had
the highest incidence followed by NSP2 (T2651), ORF3a (Q57H), N (R203K and
G204R) and finally Spike [65, 66]. Interestingly, the SARS-CoV-2 genome was more
susceptible to mutation because of the high frequency of nt14408 mutation (which
located in RNA polymerase) and the high expression levels of ADAR and APOBEC
in severe clinical outcomes [66].

The SARS-CoV-2 ancestral strain has caused pronounced superspreading events,
reflecting a disease characterized by overdispersion, where about 10% of infected
people causes 80% of infections. Lockdowns exert an evolutionary pressure which
favors variants with lower levels of overdispersion. Overdispersion is an evolution-
arily unstable trait, with a tendency for more homogeneously spreading variants to
eventually dominate [67].



Chapter 5 ®)
Spike Protein Mutations Detected e
in Currently Circulating Strains

Abstract The main mutations in Spike are discussed individually in much detail,
moving from structure to function.

Keywords Mutation rate - RBD - RBM - FCS

Structurally, the Spike protein of SARS-CoV-2 has an additional cleave in the S1
subunit compared to SARS-CoV-1. A first study reported the nucleotide mutation
rate (MR) of Spike gene from January to April 2020 at 2.19 x 1073 substitu-
tion/site/year [68], which was significantly higher than the MR of the entire genome
[69, 70]. At 9-months, such MR remained unvaried at 1.08 x 10~ ribonucleotide
substitutions/site/year, similar across clades [71].

Borges et al estimated SARS-CoV-2 mutation rate and demonstrate the repeata-
bility of its evolution when facing a new cell type but no immune or drug pres-
sures at 3.7 x 107% nt™! cycle™! for a lineage of SARS-CoV-2 with the originally
described Spike protein and of 2.9 x 107® nt™! cycle-1 for a lineage carrying the
D614G mutation that has spread worldwide. Mutation accumulation is heterogeneous
along the genome, with the Spike gene accumulating mutations at a mean rate 16 x
107 nt~! per infection cycle across backgrounds, 5-fold higher than the genomic
average. Mutators emerged in the D614G background, likely linked to mutations in
the RNA-dependent RNA polymerase and/or in the proofreading exonuclease [72].

The global frequencies of different immune escape mutations have been assessed
in several research articles [73]. It has been hypothesized that Spike protein muta-
tions in novel SARS-CoV-2 “variants of concern” commonly occur in or near indels
[74]. All 22 N-glycan sites of SARS-CoV-2 Spike remain highly conserved among
the variants B.1.1.7, P.1 and 501Y.V2, opening an avenue for robust therapeutic inter-
vention [75]. Increased virulence is more likely to be due to the improved stability
to the S trimer in the opened state (the one in which the virus can interact with
the cellular receptor ACE2) than due to alterations in the complexation RBD-ACE2
[76]. The consequences of mutations can be dramatic: e.g., high-frequency Spike
mutations R346K/S, N439K, G446V, L455F, V483F/A, E484Q/V/A/G/D, FA86L,
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F490L/V/S, Q493L and S494P/L might compromise some of mAbs in clinical trials
[2]. In this paragraph, we will review notable missense mutations and deletions.

D614G appeared in January 2020 and showed a MR of 0.999 in October—
November 2020 [25], meaning it fastly became almost universal. D614G compro-
mises the hydrogen bond with T859 of the adjacent monomer, provides higher flex-
ibility, potentially modifies glycosylation at N616 [77], changes the inner motion of
the RBD modifying its cross-connections with other domains [78], affects the pH-
dependent responsiveness of SARS-CoV-2 and enhances its lysosomal trafficking
[79]. Clade G, which derives its name from D614G, and its related strains GR and
GH, are characterized by reduced S1 shedding, higher replication in nasopharynx and
trachea [80] and increased infectivity [81]: It increases syncytium formation and viral
transmission via enhanced furin-mediated Spike cleavage [82]. D614G has lower
association with the proteins UGGT]1, calnexin, HSP7A and GRP78/BiP (which
ensure glycosylation and folding of proteins in the ER), is not cleaved endoprote-
olytically, binds less laminin [83] and eliminates the unusual cold-induced unfolding
characteristics [84]. D614 is nevertheless not worrying for nAb-based therapeutics
and vaccines, and it actually increases the susceptibility to neutralization [85, 86].
D614G first established in countries where transmission rates at the beginning of the
pandemic were higher [31, 87] and massively expanded. The P323L mutation in the
RNA-dependent RNA polymerase (often referred as NSP12b:P314L) accompanies
the D614G Spike mutation in most of the analyzed sequences (MR=0.994) [25].

The mutations A222V and L18F are far from the main D614G mutation and
are found in the N-terminal domain of the S1 subunit, within areas defined as
possible B cell epitopes [88]. The A222V mutation (which characterizes the 20A.EU1
clade [89]) was already detected in March 2020 in Iran, expanded in Spain from
June to August 2020 (MR from 0.42 to 0.87) and continued its expansion to
Norway (MR=0.40), Italy (MR=0.27), Latvia (MR=0.24), Switzerland (MR=0.22),
the United Kingdom (MR=0.18) and other European countries. The sequences in
October—November yielded MR values of ~0.66-0.72) [25].

L18F in the Spike was marginally present in different countries in March 2020
(MRs ~0.005) [25], but massively spread within the B.1.1.7, P.1 and B.1.351 VOCs
detailed below [90].

S31F and S50L are located in the NTD. As of March 29, 2021, they have been
seen to evolve together in lineage B.1.5.96 in the USA and B.1.1.70.1 (AP.1) in
Saxony and moreover have occurred independently before [91]. At the same time,
S31F has been detected in 17 viruses in several countries and lineages, likely to have
evolved convergently. SSOL has been detected in 123 viruses in several countries and
lineages.

A69-70HV was originally described in association with B.1.1.7. Convergent
evolution started in Thailand and Germany in January 2020. AH69/AV70 dimin-
ishes protrusion of the 69-76 loop, increasing Spike-mediated infectivity by 2 folds.
Interestingly for screening purposes, the deletion causes false negativity in the Spike
target (so-called S-dropout variant or S-gene target failures (SGTF)) of a 3-target
TagPath® RT-PCR COVID-19 assay (Thermo Fischer Scientific) [92-94]. The dele-
tion can also be detected as a positive signal using a pair of molecular beacons
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paired with loop mediated isothermal amplification (LAMP) [95]. B.1.1.7 is associ-
ated with higher viral loads [96]. The deletion rarely occurs as a lone mutation [48].
It was later detected in lineages B.1.375 [97, 98] and B.1.346 reported from USA
[97] and in lineages B.1.1.7 (described below), B.1.1.298 (described below), B.1.177
(EU1),B.1.160 (EU2) and B.1.258 A [99] reported from Europe. The deletion causes
partial resistance to neutralization by the COVA1-21 mAb, but <3-fold reduction in
neutralization by former convalescent sera [100].

T95I has been reported in VOI B.1.526 and B.1.617.1 v.1, in AV.1 and B.1.1.318
and occasionally in the VOC B.1.617.2.

G142D is found in B.1.617 lineage from India [101].

AY144 is found in B.1.1.318, A.VOIL.V2, B.1.616 and B.1.620.

W152C is found in B.1.427/B.1.429 lineages from USA and many more. That
NTD is a region exhibiting particularly high frequency of mutation recruitments,
suggesting an evolutionary path on which the virus maintains optimal efficiency of
ACE2 binding combined with the flexibility facilitating the immune escape [102].

R246I occurs in B.1.351 v.1

AS70D found in B.1.1.7 introduced a salt bridge switch that could modulate the
opening and closing of the RBD [103].

Q677H has been observed in eight distinct lineages (including B.1.429 and
B.1.525) and is increasing in prevalence [89, 104].

N679S has been found in a few isolates in the US mid-Atlantic region [105].

A suboptimal furin cleavage site (FCS) is located at the S1/S2 junction within the
sequence g3 PRRAR/Sgg6. Such site is not found in related coronaviruses. It promotes
infection of respiratory epithelial cells and transmission in animal models [106-108]:

e P681 affects one of P681H that has been found both in the UK B.1.1.7 and in the
Philippines B.1.1.28 lineage described in details below, in B.1.1.207 lineage in
Nigeria[109],in alineage inIsrael [110],in 3 lineages (B.1.243/20A,B.1.222/20B
and B.1/20C)in New York [111]andinB.1.1.318,B.1.342.1,P.3/B.1.1.28.3/PHL-
B.1.1.28, AV.1, A.VOIL.V2, B.1.519 and B.1.621. While P681H may increase
Spike cleavage by furin-like proteases, this does not significantly impact viral
entry or cell-cell spread [112].

e P681R has been found in B.1.617 from India [101, 113]: It facilitates the furin-
mediated Spike cleavage and enhances and accelerates cell-cell fusion [114].
P681R mutation—which may affect viral infection and transmissibility—needs
to occur on the background of other Spike protein changes to enable its functional
consequences [115]. Reverting the P681R mutation to wild-type P681 signifi-
cantly reduced the replication of Delta variant, to a level lower than the Alpha
variant harboring P681H.

T716I has been reported within the B.1/20C clade from New York [111].

D796H has been found in B.1.1.318.

F888L is the peculiar mutations of B.1.525 described below.

T11171 occurs in lineage B.1.1.389 circulating in 2020 in Costa Rica [116]

The RBD is the hot spot of neutralization. Despite RBD-binding antibodies
comprise a relatively modest proportion of all Spike-binding IgG serum antibodies
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in naturally infected individuals (consistent with studies reporting that less than
half of Spike-reactive B cells and monoclonal antibodies bind to RBD [117-120]),
RBD-binding antibodies contribute the majority of the neutralizing activity in most
convalescent human sera [121, 122], both at early (~30 day) and late (~100 day)
time points post-symptom onset [123]. There are 56 individual amino acid changes
between the RBD of SARS-CoV-2 and SARS-CoV [124], including sites at which
antibody escape has been observed for SARS-CoV [125], which explains why the
majority of SARS-CoV-induced neutralizing mAbs do not to neutralize SARS-CoV-
2 and vice versa. Mutations in the RBD (residues 333-527) outside the RBM have
been described.

R346S causes resistance to class 3 antibodies.

V367F has no effect [126] or improves ACE2 affinity via enhanced hydrogen-
bonding interactions [18, 127] according to different reports. It is found in the A.23.1
lineage (reported from an Uganda prison in July 2020) together with F157L and
QO613H [128].

P384A abrogates neutralization by COVA1-16 mAb [100]. P384L lies in the
RBD. This mutation has been detected in 799 viruses in 35 countries and multiple
lineages (including B.1.1.70.1/AP.1 from Saxony [91]), yet is still present in less
than 0.5 % of cases worldwide.

R403T significantly reduced ACE2-mediated virus infection, while a single
T403R mutation allows the RaTG13 S to utilize the human ACE2 receptor for
infection of human cells and intestinal organoids [129].

K417 has two different significant mutations. K417N occurs in the B.1.351 and
B.1.617.2.1 VOCs, while K417T occurs in the P.1 VOC. Both mutations break the
hydrogen bond with ACE2 reducing affinity [130]. Despite the loss in the binding
affinity (1.48 kcal/mol, i.e., 6.4-fold drop [131]) between RBD and ACE2 [132], the
K417N/T mutations abolish a buried interfacial salt bridge between RBD and escapes
neutralization by mAbs etesevimab [131, 133, 134], COVA2-07 and the public
COVA2-04 [100, 135, 136], but mutations only modestly affect binding by a few
CCP samples [137]. K417R leads to resistance to the REGN-COV2 cocktail [138].
Five out of the 17 most potent mRNA vaccine-elicited mAbs were at least ten-fold
less effective against pseudotyped viruses carrying the K417N mutation compared
to K417strain [139].

For what concerns immune escape, the most dangerous mutations are the ones
within the RBM (residues 438-506): ACE2 binding is increased by mutations at
L455, A475, F486, Q493 and P499 and reduced by changes at R439, L452, T470,
E484, Q498 and N501 [140]. Mutations within the RBM increasing affinity to the
ACE2 receptor definitively deserve special attention. Nevertheless, the four RBM
mutations that to date have the highest frequency among sequenced viruses (N439K,
Y453F, S477N and N501Y) do not strongly affect binding by convalescent sera
[123].

N439K has 2-folds higher binding affinity to ACE2, but this does not translate
in higher replication kinetics or clinical severity. First identified in lineage B.1 in
March 2020 in Scotland, it is now widespread in association with the AH69/AV70
deletion, e.g., in B.1.258 A [99]. N439K mutation causes resistance to different class
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3 monoclonal nAbs, including imdevimab (REGN10987) [131] [141], as well as
from 8% of convalescent sera [141].

N440K has higher affinity to ACE2 [142, 143]. It emerged during replication
in the presence of the class 3 mAb C135 and is resistant to both C135 [139, 143]
and REGN10987 [139, 142, 144, 145], but retains full sensitivity to both C121 and
C144 [143]. N440K is found in B.1.1.420 [146] and has a frequency of 2.1% in
India and a high prevalence in the state of Andhra Pradesh (33.8%) and Karnataka
[147] as of March 2021: The variant site was homoplastic, and the variant was
found in genomes belonging to different clades (e.g., B.1.36 [147]) and haplotypes.
Interestingly, N440K co-occurs with C64F mutation in M glycoprotein [148]. N440K
was associated with asymptomatic reinfection of two healthcare workers in Northern
India [149] and one individual from Andhra Pradesh [150]: It had been reported in
11 countries as of January 2021 [151] (including Latvia [152], USA [152] and Italy).
mRNA vaccines sera neutralizing activity is reduced by 2-folds [153]. The N440K
variant produced ten times higher infectious viral titers than a prevalent A2a strain
and >1000 folds higher titers than a much less prevalent A3i strain prototype in Caco2
and Calu-3 cells. Interestingly, A3i strain showed the highest viral RNA levels, but
the lowest infectious titers in the culture supernatants, indicating the absence of
correlation between the RNA content and the infectivity of the sample [154].

Several mutations hit the so-called 443—450 loop epitope (aa 443—452 and 494—
501):

e G446V mutation reduces neutralization by convalescent serum by 30-folds [137]
but only <5 folds in another where KVG444-6TST was tested [ 100]; neutralization
by COVA2-29 mAb was very reduced in the latter study [100].

e L1.452R does not have a major impact in ACE2 affinity when tested in the
context of recombinant monomeric RBD but presents enhanced binding within
the context of full-length membrane anchored Spike [155]. L452R causes resis-
tance to bamlanivimab [133], while the related mutation L452K causes resistance
to COVA2-29 mAb [100]. L452R is the only Spike mutation found in CAL.20A
[156] (also known as B.1.232, which also infected gorillas in San Diego zoo
[157]) and the most concerning and recently acquired mutation in the CAL.20C
(B.1.427/B.1.429) strain from Southern California [158]. L452R is also found in
A21,A24, A25,B.1.1.10, B.1.1.130, B.1.617.1 and B.1.617.2 VOCs [101],
B.1.362+L452R, C.16 and C.36. Of interest, the C.37 VOI and a single B.1.74
strain harbors the L.452Q mutation [156]. L452R also causes evasion from HLA-
A24-restricted CTL response [159]. L452Q increases ACE2 binding by 3-folds
and in vitro infectivity by 2-folds [160].

e S494P increases the complementarity between the RBD and ACE2 [127]. S494
interacts with nAb but not with ACE2 [161]. S494P causes ~3 to 5-fold decreases
in neutralization titer for a few convalescent sera [137, 161] and escape to
several mAbs [162]. It has been isolated in 369 B.1.1.7 sequences from UK
from November 12, 2020, to February 5, 2021 [90] and in the B.1/20C clade from
New York [111]. S494D destroys neutralization activity by both COVA2-29 and
COVAL1-12 mAbs [100].
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e N501Y (nicknamed “Nelly”) falls within an epitope defined by the “443-450”
loop, introduces a favorable m-m interaction [103] and increases affinity to ACE2
by 10-folds [142, 163-166] (estimate at —0.81 kcal/mol [167] or —20 kcal/mol
[168] in different studies) because of higher number of interactions with residues
Y41 and K353 (ACE2) [169, 170]. It also reduces presentation across the majority
of MHC-II alleles [171]. N501Y allows a potential aromatic ring—ring interaction
and an additional hydrogen bond between the RBD and ACE2 [164], leading
to 9-fold stronger binding [132]. N501 in SARS-CoV-2 corresponds to S487 in
SARS-CoV, one of the residues whose mutations allowed the species jump from
palm civet to humans [172]. N501Y was selected in six passages in aged mice [173,
174] and increases transmissibility and virulence in a murine model [175]. First
isolated in Brazil and USA in April 2020 [48], N501Y causes resistance to mAb
COV2-2499 [137], modest effects on binding by majority of other mAbs [136]
(e.g., COVA1-12 and COVA2-17 [100] or bamlanivimab/LY-CoV555 [164]) and
minor reductions in neutralization by convalescent sera [100, 137, 174] or sera
from individuals vaccinated with BNT162b2 [164]. Four out of the 17 most potent
mRNA vaccine-elicited mAbs were at least 10-fold less effective against pseu-
dotyped viruses carrying the N501Y mutation [139], but another study reported
that vaccine-elicited sera were able to neutralize a mouse-adapted SARS-CoV-
2 N501Y strain [174]. N501Y is among the main mutations of different vari-
ants of concern, i.e., B.1.1.7 from UK, B.1.351 from South Africa and P.1 from
Brazil (so that NextStrain initially named those variants as 501Y.Vx), and of
B.1.1.70.1/AP.2 from Saxony [91]. On December 2020, a different mutation,
N501T, was reported in Brescia (Lombardy) in a single immunocompromised
patient (MB61): The same N501T mutation has been observed in mustelids (minks
[176, 177] and ferrets [172]): The N501T-G142D variant and N501T-G142D-
F486L variant dominate the US mink-derived SARS-CoV-2 sequences [178].
N501Y-specific one-step, real-time RT-PCRs have been developed [179-181].

Y453F increases affinity to ACE2 (from —12.39 to —10.27 kcal/mol) and partially
escapes detection by monoclonal nAbs CC12.1, CC12.3, COVA2-04, CV07-250
[182, 183], etesevimab [131, 184] and casirivimab [184, 185] but not COVA2-39 or
CV07-270 [182, 183]. It was the most concerning mutation of the Cluster V variant
(discussed below in detail) and also causes evasion from HLA-A24-restricted CTL
response [159].

LF455YL abrogates neutralization by COVA1-12 mAb and reduces that by
COVA-2-07 and COVA2-29 mAbs [100].

TEI470-2NVP prevents neutralization by COVA2-29, COVA2-07 and COVA2-
02 mAbs and reduces the activity of COVA1-18 and COVA1-21 mAbs by >100-folds.
The neutralization by convalescent sera is only reduced by 2-folds [100].

A475V is resistant to class I antibodies.

S477N attenuates neutralization by mAb and convalescent sera [186]. S477N
is the hallmark mutation of 20A.EU2 strain [89] (including local variants such as
Marseille-4 strain first detected in southern France and Algeria [187].
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T478 mutations: T478K has been reported in B.1.1.519 from Mexico [188] and
in the 20B/B.1.1.222 clade from Mexico, Southern USA and New York [111].
It appeared in 4,214 cases out of 820,000 as of March 26, 2021 [189]. T478R
characterizes A.VOIL.V2 and VOC B.1.617.2.

E484 mutations: E484K (nicknamed "Eeek'), caused by SNP G23012A,
emerged worldwide in March 2020. It is found in more than 64 out of 800 lineages
as of March 2021 [190], being a dramatic example of convergent evolution. E.g., it
is found in the B.1.351 lineage from South Africa together with N501Y and K417N,
in several B.1.1.7 subclades, B.1.1.33(E484K), P.1, P.2, B.1.525, B.1.526, B.1.220
from New York [191], B.1.243.1 from Arizona [192], R.1 from Japan and USA
[193] and B.1.1.318 and B.1.621 lineages from UK. The effect of E484K mutation
on ACE2 affinity is uncertain, with different reports suggesting either reduced [130],
higher [194] or unchanged binding affinity to ACE2 [132]. E484 frequently engages
in interactions with antibodies but not with ACE2 [161]. E484K evades neutralization
by mAbs and convalescent sera [186] more than 10 folds [123]. In particular, E484K
causes resistance to many Class 2 RBD-directed antibodies [195], including DH104 1
[196] and bamlanivimab [133]. A majority of the most potent mRNA vaccine-elicited
mAbs were at least 10-fold less effective against pseudotyped viruses carrying the
E484K mutation [139]. In another study, serum neutralization efficiency was lower
against the isogenic E484K rSARS-CoV-2 (vaccination samples: 3.4 fold; convales-
cent low IgG: 2.4 fold, moderate IgG: 4.2 fold and high IgG: 2.6 fold) compared to
USA-WA1/2020 [197]. Another mutation at the same site (E484Q) has also been
found in a smaller number of human isolates [137, 198] and in VOCs B.1.617.1 and
B.1.617.3 [101].

G485R causes ~3 to 5-fold decreases in nAb titer for a few sera [137]. G485
residue does not have a direct interaction with ACE2, its mutation to arginine
affects the structure of the 480-488 loop of the RBM, disrupting the interactions
of neighboring residues with ACE2 [199].

F490S causes escape to several mAbs [162] and was reported in 20 B.1.1.7
sequences from UK from December 13, 2020 to February 5, 2021 [90].

Q493R causes resistance to class 3 antibodies and especially to both
bamlanivimab and etesevimab [200-202].

The occurrence of all the abovementioned mutations in each variant (see section
below) is summarized in Table 5.1 and Fig. 5.1. PyRO, a hierarchical Bayesian
multinomial logistic regression model that infers relative transmissibility of all viral
lineages across geographic regions, detects lineages increasing in prevalence, and
identifies mutations relevant to transmissibility.
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Chapter 6 ®)
SARS-CoV-2 Variants Chack or

Abstract This chapter discusses each VOC, VOI, and variant under monitoring.

6.1 B.1.1.298

Minks got infected from humans and back-infected humans [203] in the Nether-
lands [204, 205], Denmark [183, 206], Canada, Italy, Spain, Sweden, Poland [207,
208] and the USA. In mid-2020, mink-derived variants accounted for 40% of the
total SARS-CoV-2 cases in the Netherlands and were less lethal and transmissive
compared to the native human strains [209]. B.1.1.298 represented one of the Danish
clusters (Cluster 5/ AFVI-Spike), harboring 4 additional genetic changes (D614G,
1692V and M12291 substitutions, and AH69/AV70). Despite binding the human
ACE2 receptor with a fourfold higher affinity suggesting an enhanced transmission
capacity, sensitivity to convalescent or vaccine-elicited sera remained unchanged
[210]. Following the lockdown and mass-testing, Danish State Serum Institute (SSI)
announced on November 19, 2020, that cluster 5 in all probability had become
extinct. Cluster V retained robust binding to RBD-directed nAbs, DH1041, DH1043
and DH1047, and improved binding affinity of to the neutralizing NTD-directed
antibodies DH1050.1 and DH1050.2 by 3.5 and 2.6-fold, respectively [196]. On the
contrary, the Utah mink SARS-CoV-2 strain fell into Clade GH, which is unique
among mink and other animal strains sequenced to date and did not share other
Spike RBD mutations Y453F and F486L found in B.1.298 [211]. Another spillover
of mink-adapted SARS-CoV-2 from farmed mink to humans occurred in Poland after
extensive adaptation and lasted at least 3 months, leading to 4 mutations in the S gene
(G75V, M177T, Y453F and C1247F) [208].
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6.2 B.1.1.7 (Alpha)

Named 201/501Y.V1 by NextStrain, Variant Under Investigation (VUI) or Variant
Of Concern (VOC) 202,012/01 by PHE, and alpha by WHO, the strain was collo-
quially known as UK variant. It was first reported on December 2020 in England
and harbored 14 substitutions and 2 deletions in Spike. The earlier 501Y lineage
(occasionally named 501Y variant 1, which circulated mostly from early September
to mid-November) had no AH69/AV70 and was 10% more transmissible than the
501 N lineage: the later dominant 501Y lineage (ambiguously named 501Y variant
2, which started circulating at late September) harbored AH69/AV70, was up to 75%
more transmissible than the 501 N lineage [212, 213] and continued to grow during
a lockdown in which other lineages shrank [214]. Within households in Norway, an
increase in the secondary attack rate by 60% compared to other variants was found.
The estimated reproduction number was significantly increased by 24% (0.19 in
absolute terms) compared to other variants [215-217]. Compared to the wild-type,
B.1.1.7 had comparable surface stability (on steel, silver, copper and face masks)
and similar inactivation susceptibility (to heat, soap and ethanol) [218].

B.1.1.7 carries 23 mutations in Spike, ORF8 [219] and N [148]: 7 Spike mutations
occur in S1 (AH69/AV70 and 2 changes in the RBD: N501Y, A570D) and 4 in S2
(P681H, T7161I, S982A and D1118H) [48]. Only, the N501Y substitution exhibited
consistent fitness gains for replication in the upper airway in the hamster model as well
as primary human airway epithelial cells [166]. The non-coding deletion g.a28271-
, at upstream of the nucleocapsid (N) gene, triggered the high transmissibility of
B.1.1.7. The deletion changes the core Kozak site of the N gene and may reduce
the expression of N protein and increase that of ORF9b. The expression of ORF9b
is also regulated by another mutation (g.gat28280cta) that mutates the core Kozak
sites of the ORF9b gene. If both mutations back-mutate, the B.1.1.7 variant loses its
high transmissibility. Moreover, the deletion may interact with ORFla:p.SGF3675-
, S:p.P681H, and S:p.T7161 to increase the viral transmissibility [220]. The alpha
mutations cause a significant shift in the processing state of N-glycans on one specific
N-terminal domain site [221]. B.1.1.7 isolates have dramatically increased subge-
nomic RNA and protein levels of Orf9b and Orf6, both known innate immune antag-
onists. Expression of Orf9b alone suppressed the innate immune response through
interaction with TOM70, a mitochondrial protein required for RNA sensing adaptor
MAVS activation, and Orf9b binding and activity was regulated via phosphorylation
[222].

PANGOLIN distinguishes several B.1.1.7 sublineages: ®* Q.1 * Q.2 * Q.3+ Q.4
harbors P681R (66%) or P681H (32%) * Q.5 harbors D138H (90%) and F490S
(84%), and is the rarest substrain * Q.6 * Q.7 ¢ Q.8, on the contrary of Q.1-7, rarely
harbors P681H, T716I, and S982A.

e B.1.1.7 with E484K (aka VOC202102-02 or VOC-21FEB-02 by PHE) was
detected in 11 sequences out of 214,159 from Dec 17, 2020, to Jan 26, 2021
[223], which restores the overall ACE2-binding affinity at the same level as N501Y
[132]: as of Feb 5, the sequences increased to 27 [90]. The strain has 3.8-folds
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reduced neutralization by mRNA-1273 and BNT162b2-elicited sera compared to
wild-type [224], although another study employing a pseudotyped virus showed
no reduction in neutralization by BNT162b2-elicited sera [225].

e Two more RBM mutations leading to potential immune escape were reported:
F490S and S494P [90]. Additionally, L.18F substitution initiated a substrain char-
acterized by replicative advantage of 1.70 in relation to the remaining VOC-
202012/01 substrains [90]. Normalized subgenomic expression profiles are signif-
icantly increased in B.1.1.7 infections as a direct consequence of a triple nucleotide
mutation in nucleocapsid (28280:GAT > CAT, D3L) creating a transcription
regulatory-like sequence complementary to a region 3’ of the genomic leader
[226].

In addition to SGTF described above, N gene dropout or Ct value shift is specific
for B.1.1.7 positive samples using the Allplex SARS-CoV-2/FluA/FluB/RSV PCR
assay [227]. B.1.1.7-specific primer sets have been recently designed [228-230], and
RT-ddPCR can confirm 4 mutations within the S gene associated with the B.1.1.7
lineage [231].

The strain has similar MR as other lineages: however, B.1.1.7 suddenly appeared
with much divergence from the other strains: this can be explained with introduc-
tion from a country with poor genomic surveillance, or by regular viral evolution in
an animal host before returning to human, or by accelerated viral evolution occur-
ring in a single immunocompromised patient with chronic infection (see paragraph
below). Extensive genomic analyses denied in-human evolution and suggested that
Canidae, Mustelidae or Felidae could be a possible host of the direct progenitor of
variant B.1.1.7 [232]. Alternatively, recombination has been proposed as a mecha-
nism for generation of B.1.1.7 [233]. Accordingly, further recombination has been
detected among B.1.1.7 and other strains (B.1.36.17, B.1.36.28, B.1.177, B.1.177.9,
B.1.177.16,B.1.221.1): interestingly, in 6 of 8 instances (and all 4 of the transmitting
groups), the mosaic viruses contain a Spike gene from the B.1.1.7 lineage and in 4
instances there is a proposed recombination breakpoint at or near the 5’ end of the
Spike gene [234].

Different reports suggested ACE2-binding affinity by B.1.1.7 as stable [168], 2-
folds higher [235], 5.4-folds higher [155] or 10-folds higher [236] when compared to
wild-type D614G: the mutations that likely contribute to this phenotype are AH69-
V70 in the NTD and N501Y in the RBD that enhanced binding by ~1.51 and ~2.52
folds, respectively [155]. Fusogenicity is increased [237]. The replicative advantage
of B.1.1.7 has been estimated at 2.24 [238], but, when cultivated separately, viral
replication is unchanged in primary human airway epithelial cells and reduced in
Vero cells (potentially due to increased furin-mediated cleavage of its Spike protein
as a result of a P681H mutation directly adjacent to the S1/S2 cleavage site) [239,
240]. However, when wild-type and B.1.1.7 viruses were put in competition in a
human reconstituted bronchial epithelium, B.1.1.7 outcompeted the ancestral strain
[241] likely due to enhanced entry [242]. B.1.1.7, compared to an ancestral SARS-
CoV-2 clade B virus, produced higher levels of infectious virus late in infection and
had a higher replicative fitness in human airway, alveolar and intestinal organoid
models [243].
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Syrian hamster models suggest increased fitness in upper respiratory tract [244,
245], higher aerosol transmission [246] and strong elevation of proinflammatory
cytokines but no increased pathogenesis compared to wild-type strains [247, 248]:
previous infection from wild-type strain confers protection [248]. On the contrary
a murine model showed 100-folds higher mortality, more severe lesions in internal
organs, distinct tissue-specific cytokine signatures, significant D-dimer depositions
in vital organs and less pulmonary hypoxia signaling before death compared to
wild-type strain: again, previous infection from wild-type strain confers protection
[249].

Available SGTF data in community-based diagnostic PCR testing indicate a shift
in the age composition of B.1.1.7 reported cases, with a larger share of under 20
years old among reported B.1.1.7 than non-B.1.1.7 cases [250]. Initially, there were
no evidence for changes in reported symptoms or disease duration associated with
B.1.1.7 [251], but later, studies reported mortality increased by 35% [252, 253].
Another study estimated the adjusted hazard ratios for critical care admission and
mortality to be 1.99 and 1.59 for VOC B.1.1.7 compared with the original variant
group, respectively; the adjusted hazard ratio for mortality in critical care was 0.93
for patients with VOC B.1.1.7, compared to those without [254]. The proportion
of cases with hypoxia on admission was greater in those infected with the B.1.1.7
variant [255].

HLA-A2* CD8" T cell epitopes from B.1.1.7 had lower binding capability than
those from the ancestral strain. In addition, these peptides could effectively induce
the activation and cytotoxicity of CD8* T cells. At least, two site mutations in
B.1.1.7 resulted in a decrease in CD8" T cell activation and a possible immune
evasion, namely A1708D mutation in ORF1ab1707-1716 and 12230T mutation in
ORF1ab2230-2238 [256].

Sera from persons vaccinated with BNT162b2 neutralized isogenic Y501 SARS-
CoV-2 strain (generated on the genetic background of the N501 clinical strain USA-
WA1/2020) [257] or B.1.1.7 Spike pseudotypes (A69-70 + N501Y + A570D [258-
260] or the full set of mutations [261]) or authentic B.1.1.7 [239, 262-265] with
equivalent or less than threefold reduced titers compared to wild-type strain. No
impact was detected on neutralization titers when using sera from human subjects
vaccinated with mRNA-1273 [266-268] or COVAXIN [269]. In a large study in UK,
no HCW vaccinated twice with BNT162b2 or ChAdOx 1 had symptomatic infection,
and incidence was 98% lower in seropositive HCWs. Two vaccine doses or seropos-
itivity reduced the incidence of any PCR-positive result with or without symptoms
by 90% and 85%, respectively. Single-dose vaccination reduced the incidence of
symptomatic infection by 67% and any PCR-positive result by 64% [270].

Overall, B.1.1.7 causes resistance to neutralization by the NTD-specific neutral-
izing mAbs [271], such as COVA2-17, COVA1-12 and COVA1-21 [267], but not
1-57, 2-7 [272] and bamlanivimab [264]. Antibodies biding the NTD antigenic
supersite are ineffective, while antibodies-binding RBD and fusion peptide (DH1058)
remain effective[ 196]. Most convalescent human sera showed neutralization reduced
by <3-folds [100, 239, 262, 267, 268] and hamster models confirm protection against
B.1.1.7 from previous infection [273]. Accordingly, only a single patient (previously
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infected with B.2) has been reported as getting genotypically defined B.1.1.7 rein-
fection to date in UK, despite intensive genomic monitoring [274], and 2 in Italy
[275] and 1 in USA [276]. The reinfection rate 0.7% is similar to older strains [251].
Co-infection between B.1.1.7 and B.1.351 has been reported in 90-years-old female
from Belgium [277].

The mutations seen in B.1.1.7 would not result in loss of dominant nAb responses
to linear Spike glycoprotein and nucleoprotein epitopes in the vast majority of
COVID patients [278]. Antibodies elicited by B.1.1.7 infection exhibited signifi-
cantly reduced to undetectable neutralization of parental strains, B.1.351 [279] or
B.1.427/B.1.429 [280] VOCs compared to that of B.1.1.7, which is different from
what was observed with B.1.351-elicited sera.

B.1.1.7 first appeared on Sep 20 in South-East England [281] but soon spread
detected across all continents and became dominant in Europe within March 2021
[282]. Facebook mobility data (https://visualization.covid19mobility.org/?region=
WORLD predicted the spreading of B.1.1.7 [283] across all continents (https://
cov-lineages.org/global_report_B.1.1.7.html) [284,285]. B.1.1.7 spread with greater
transmission in colder and more densely populated parts of England and had
transmission advantage at warmer temperatures versus other strains, implying that
Spring conditions facilitated B.1.1.7’s invasion in Europe and across the Northern
hemisphere [286].

6.3 B.1.351 (Beta)

Named VOC 202012/02 or VOC-20DEC-02 by PHE, 20H/501Y.V2 by NextStrain
and beta by WHO, this lineage was known colloquially as South African variant. It
was found since October 2020 in Nelson Mandela Bay in the Eastern Cape Province
of South Africa and spread across all continents (https://cov-lineages.org/global_rep
ort_B.1.351.html) [284]. The strain harbored D80A, D215G, AL242-A243-1.244,
K417N, E484K, N501Y, and A701V as a signature [105] and evolved from GISAID
clade GH [287]. K417N and E484K reduce the ACE2-binding affinity by abolishing 2
interfacial salt bridges that facilitate RBD binding, K417(S)-D30(ACE2) and E484
(S)-K31(ACE2). These two mutations may thus be more than compensating the
attractive effect induced by N501Y, overall resulting in an ACE2-binding affinity
variably reported as unchanged [288] or fivefold higher than wild-type [235], i.e.,
threefold stronger than wild-type RBD but threefold weaker than N501Y [132]. The
NTD substitution R2461 decreased ACE2-Fc binding by ~1.52 folds, the A242-244
deletion by ~1.35 folds, whereas K417N had a greater impact with a decreased
binding of ~7.7 folds relative to D614G [155]. Viral fusogenicity is increased [237].
PANGOLIN distinguishes 4 substrains:

e B.1.351.1 (aka B.1.351 v.1), first reported in Botswana, additionally harbors L18F
and R246I but does not harbor AL242-A243-1.244, E484K nor N501Y

e B.1.351.2 (aka B.1.351 v.2), first reported in Mayotte, additionally harbors L18F

e B.1.351.3 (aka B.1.351 v.3), first reported in Bangladesh, harbors no additional
mutations


https://visualization.covid19mobility.org/%3Fregion%3DWORLD
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e B.1.3514

B.1.351 presented an intermediate viral load in nasopharyngeal swabs between
the B.1.1.7 and wild-type [289], and it is found more easily in saliva. Compared to
wild-type, the strain has comparable surface stability on steel, silver, copper and face
masks, and similar inactivation susceptibility to heat, soap and ethanol [218]. The
strain in cell culture grows toward the higher end of the variants [240].

K417N and E484K abolished the salt bridges between Spike and casirivimab
[290], BD23, H11_H4, and C105 [291], but not VH-Fc ab8 [292], 1-57 and 2-7
[272]. Hamster models suggested no increased pathogenesis compared to wild-type
strains [247]. The strain was fully resistant to bamlanivimab [264, 290, 293], CA1,
etesevimab and CC12.1, and, most importantly, convalescent sera were no longer
neutralizing in 48% of cases (only 7% retaining IDso > 400) [262, 267, 290, 294—
296]. Despite loss of recognition of immunodominant CD4 epitope(s) and 12.7 fold
reduction in neutralization of a B.1.351-pseudotyped lentivirus by serum from conva-
lescent subjects, overall CD4* and CD8* T cell responses to B.1.351 are preserved
[297].

Hamster models suggested protection from B.1.351 after previous infection [273].
A murine model showed 100-folds higher mortality, more severe lesions in internal
organs, distinct tissue-specific cytokine signatures, significant D-dimer depositions
in vital organs and less pulmonary hypoxia signaling before death compared to wild-
type strain: again, previous infection from wild-type strain confers protection [249].
K18-hACE2 transgenic mice challenged with the B.1.351 variant displayed a faster
progression of infection. Furthermore, B.1.351 can establish infection in wild-type
mice [298], while B.1 cannot. B.1.351-challenged wild-type mice showed a milder
infection than transgenic mice [299]. In humans, compared to Alpha (B.1.1.7) variant,
odds of progressing to severe disease were 1.24-fold higher, odds of progressing to
critical disease were 1.49-fold higher, and odds of COVID-19 death were 1.57-fold
higher for Beta [300].

One case of reinfection from B.1.351 (4 months after non-B.1.351) has been
documented to date [301] and 4 in Luxembourg [276]. Co-infection with B.1.1.7
and B.1.351 has been reported in a 90-years-old patients from Belgium [277]. Sera
from B.1.351-infected patients maintained good cross-reactivity against viruses from
the first wave and P.1 VOC [302]. Adaptive mutations in the E gene might have had
associated fitness costs that were subsequently recouped by secondary mutations
elsewhere in the gene [303]. B.1.351-specific primer sets have been recently designed
[229].

mRNA-1273-elicited sera led to 2.7 and 6.4-fold geometric mean titer (GMT)
reduction (albeit still 1:190) in neutralization against K417N + E484K + N501Y
+ D614G or full B.1.351 Spike pseudovirus, respectively, when compared to the
D614G VSV pseudovirus [266, 295]. Similarly, BNT162b2-elicited sera led to 0.81-
to 1.46-fold GMT reduction in neutralization against a E484K + N501Y + D614G
Spike pseudovirus [259, 260, 290] or authentic B.1.351 [166, 262-265], although
still 1:500, a titer that was higher than the average titer with which convalescent sera
neutralized D614G. Binding of a triple mutant (E484K, K417N, N501Y) RBD to
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BN162b2 vaccinee sera was reduced by 10-folds [304]. Immunization with a single
dose of mRNA-1273 or BNT162b2 vaccine generated a 1000-fold increase in nAb
titers against B.1.351 [305]. And finally, sera from persons vaccinated with one of
2 Chinese vaccines (BBIBP-CorV or recombinant dimeric receptor-binding domain
(RBD) vaccine ZF2001) largely preserved neutralizing titers, with slightly reduc-
tion, against B.1.351 authentic virus [306]. Unfortunately, a two-dose regimen of
ChAdOx1-nCoV19 vaccine did not show protection against mild-moderate COVID-
19 due to B.1.351 [307]. Initial infection with SARS-CoV-2 lineage A in hamsters
does not prevent heterologous reinfection with B.1.351 but prevents disease and
onward transmission [308].

6.4 B.1.1.28- and B.1.1.33-Derived Brazilian Variants
(Including Gamma and Zeta)

A task force created by the scientific community was able to sequence only approx-
imately 0.03% of all positive SARS-CoV-2 cases through the pandemic’s first year
[309, 310]. As of March 2021, 59 different lineages were announced in Brazil,
being the majority sequenced in Sdo Paulo, Rio de Janeiro, Rio Grande do Sul, and
Amazonas [309]. Several VOIs and VOCs have been reported:

e derived from B.1.1.28: the original B.1.1.28 lineage emerged in Brazil as soon
as February 2020 [63, 105, 311]. At least, 5 child variants have been identified
[312]:

— P.1 VOC (named gamma by WHO, 20 J/501Y.V3 by NextStrain, VOC-
21JAN-02 by PHE or improperly termed B.1.1.28.1 or B.1.1.248, or VOC
202101/02) was first reported in January 2021 in 4 Japanese travelers returning
from Manaus, the capital of Amazonas state in northern Brazil [313]. Such area
had a 76% seroprevalence at October 2020 after a largely unmitigated first wave
[314], but P.1 was able to cause 4 times more cases during a major second wave
beginning in December 2020 [187], which caused significant increases in CFR
in young and middle-aged adults [315]. P.1 transmissibility is about 2.5 times
higher compared to the previous variant in Manaus, and a low probability of
reinfection by P.1 (6.4%) was estimated [316, 317]. One case of reinfection
has been documented months after B.1 primoinfection [318]. A serosurvey in
blood donors at May 2021 showed that (assuming that reinfections induce a
recrudescence (or boosting) of plasma anti-N IgG antibody levels, yielding
a V-shaped time series of antibody reactivity levels), 16.9% of all presumed
P.1 infections that were observed in 2021 were reinfections [319]. The clade
later spread to Rio Grande do Sul [320] and finally led to imported cases
[321] and clusters [322] worldwide (https://cov-lineages.org/global_report_P.
1.html). P.1 harbors E484K, K417N and N501Y: such combination induces
conformational change greater than N501Y mutant alone [323]. The Spike
from P.1 presents a ~ 4.24-fold increase in binding compared to D614G: few
NTD mutations, namely T20N, P26S, D138Y and R190S, likely contributed
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to the increase in ACE2 binding, with ~2, ~1.6, ~1.3 and ~1.8-fold increase
compared to D614G, respectively. Interestingly, the RBD mutation K417T and
the S2 mutation T10271 decreased the ACE2-Fc by ~1.3 and ~1.7 folds respec-
tively. The H655Y mutation, near the S1/S2 217 cleavage site, also slightly
increased ACE2 interaction by ~1.2 folds [155]. P.1-specific primer sets have
been recently reported [229]. Based on similarity with cluster V RBD, P.1
was predicted to be highly resistant to both etesevimab and casirivimab [184]:
retained sensitivity to imdevimab [324], partial resistance to casirivimab [290,
324] and full resistance to bamlanivimab [290, 293, 324] and etesevimab [324]
were later confirmed using P.1 pseudovirus, as well as resistance to 4 more NTD
antibodies (2-17, 4-18, 4-19, and 5-7) [324], but not the other 2 mAbs 5-24
and 4-8 targeting the antigenic supersite in NTD [324]. P.1 is also more resis-
tant to neutralization by CCP (6.5 fold) and vaccine-elicited sera (2.2-2.8 fold)
[324]: binding of a triple mutant (E484K, K417N, N501Y) RBD to BNT162b2
vaccinee sera is reduced by 10-folds [304], while binding of the authentic
Victoria strain is reduced by 2.6 folds [325]. Binding of ChAdOx1 vaccine-
elicited sera was reduced by 2.9 folds [325]. P.1 may be 1.4-2.2 times more
transmissible and 25-61% more likely to evade protective immunity elicited by
previous infection with non-P.1 lineages [326]: increase in the risk of severity
and fatality rate from P.1 was greater among young adults without preex-
isting risk conditions [327]. Resistance to convalescent o vaccinee sera was
confirmed in murine models [328]. Co-infection by B.1.1.248 (either as major
or minor haplotype) and B.1.1.33 or B.1.91, respectively, has been reported
[310]. Unlike wild-type, P.1 is able to infect common laboratory mice, repli-
cating to high titers in the lungs [329]. 84% sera from subjects who had been
previously asymptomatically infected with B.1.1.28 contained nAbs against
the ancestral and P.1 strains, respectively, and remained positive throughout
the 6-week study period: neutralization titers were consistently higher against
the ancestral strain, but in the majority of patients (57.8%), differences did
not differ by more than a single dilution [330]. Convalescent P.1 patients are
less protected from other SARS-CoV-2 strains with an important reduction
of nAbs against 20A.EU1 and B.1.1.7, about 12.2 and 10.9-fold, respectively
[331]. VOC Gamma induces higher viral loads (N1 target; mean reduction
of Ct: 2.7) [332]. E661D in Spike protein has been identified in nearly 10%
of the genomes from Parand in March and April 2021 [333]. PANGOLIN
distinguishes several subclades:

P.1 v.1 harbors no additional mutations

Gamma plus (P.1+) harboring 2 types of additional Spike changes, having
a sharp increase (78% in the second half of May 2021): deletions in the N-
terminal (NTD) domain (particularly A144 or A141-144) associated with
resistance to anti-NTD nAbs or mutations at the S1/S2 junction (N679K or
P681H) that probably enhance the binding affinity to the furin cleavage site
[357]. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1)
from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct



6.4 B.1.1.28- and B.1.1.33-Derived Brazilian Variants ... 63

value of SARS-CoV-2 positive cases in Amazonas significantly decreases.
Still, we found no overrepresentation of P.1+ variants among breakthrough
cases of fully vaccinated patients (71%) in comparison to unvaccinated
individuals (93%).

P.1 v.2 additionally harbors V1176F, and it has been recently described in
Porto Alegre and more Brazilian states and foreign countries [334]. Another
P1-related sublineage harboring mutation L106F in ORF3a is represented
by 8 genomes from the Tocantins [335].

a genomic survey in the Amazonas revealed a sharp increase (78% in the
second half of May 2021) in the prevalence of P.1 variants harboring dele-
tions in the NTD domain (particularly A141-144) or mutations at the S1/S2
junction (N679K or P681H) [336].

— P.1-like-II lineage genomes share some, but not all, defining mutations of
the VOC P.1. For instance, it has the previously described ORF1a:D2980H
and N:P383 L unique mutations and the newly detected ORF1a:P1213L and
ORF1b:K2340N mutations [333].

— P.2 was also named VUI-21JAN-01 (formerly VUI-202101/01) by PHE, or
improperly B.1.1.28.2 or B.1.1.28(E484K)). It was classified as VOI zeta by
WHO on March 17, 2021, and then reclassified as Alert for further monitoring
on July 6, 2021. P.3 was first reported in Rio de Janeiro, harboring E484K as
the lone Spike mutation, plus 5 mutations in the UTRs, ORFS8 and N: since the
first report, two more mutations in orflab (U10667G > L3468V and C11824U
> [3853I) were reported since December 2020 [105, 311]. At least, 2 cases of
reinfection have been documented months after B.1.1.33 primoinfection [337,
338]). P.2 was also detected in the northeast region of Brazil in the states of
Bahia and Rio Grande do Norte [338]. P.2 is fully resistant to bamlanivimab but
only slight resistant to BNT162b2-elicited sera compared to wild-type strain
[264]. P.2 induced body weight loss, viral replication in the respiratory tract,
lung lesions and severe lung pathology in infected Syrian hamster model in
comparison with B.1: sera from P.2 infected hamsters efficiently neutralized
the D614G variant virus, whereas sixfold reduction in the neutralization was
seen in case of D614G variant infected hamsters sera with the P.2 variant [339].

— P.4 (originally known as VUI-NP13L), characterized by 12 lineage-defining
mutations [310].

P.4.1 presents 4 additional unique amino acid changes in ORF1a (P22875S,
V2588F, L3027F, Q3777H) and two synonymous mutations in the ORFla
gene (C1288T and G10870T) [340]. P4.1 probably emerged in Goids or
Sao Paulo around Jun-Jul 2020, but this lineage was only identified in South
Brazil at the beginning of October 2020. According to an independent phylo-
dynamic reconstruction, P.4.1 rapidly arrived in the southeastern and north-
eastern regions of Brazil and seems to have been exported to Japan, the
Netherlands and England [312]
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— 2 sequences (LBI215 and LBI218) characterized by Spike E484Q and N501T,

in addition to L18F, A142-143 GV, L938F, D950N, C28311U [341]

P.X presents additionally non-synonymous mutations when compared to
B.1.1.28, including N234P and E471Q in S protein [342]

B.1.1.28 + Q675H + Q677H clade probably arose around November 2020,
in Montevideo, the capital department of Uruguay. This clade further spread
from Montevideo to other Uruguayan departments, with evidence of local
transmission clusters in Rocha, Salto and Tacuarembo. It also spread to the
USA and Spain. The non-synonymous mutations in the viral Spike Q675H
and Q677H, which are among the 10 lineage-defining mutations, are in the
proximity of the polybasic cleavage site at the S1/S2 boundary and also are
reported as recurrent arising independently in many SARS-CoV-2 lineages
circulating worldwide by the end of 2020. Although the B.1.1.28 4+ Q675H
+ Q677H lineage was later substituted by the VOC P.1 as the most prevalent
lineage in Uruguay since April 2021 [343, 344].

e derived from B.1.1.33:

— E484K has also been found in B.1.1.33 lineage from Sdo Paulo and

Amazonas, and has been termed B.1.1.33(E484K) [345] or N.9 variant of
interest [346], harboring the additional mutations NSP3:A2529V (A1711V),
NSP6:F3605L(F36L), and NS7b:E33A.

A related B.1.1.33-derived lineage, termed N.10, harbors 14 lineage-defining
mutations. It displays as the most remarkable genetic changes the V445A
and E484K mutations in the S protein RBD, several non-synonymous muta-
tions (P9L, 1210V, and L212I), and three deletions (A141-144, A211 and
A256-258) in the S protein NTD, including a truncated NS7b protein due to a
frame-shifting deletion. Other 5 lineage-defining mutations were found among
NSP3, NSP5, NSP6 and N. This VOI probably emerged in late December 2020
and comprises a significant fraction (23%) of the SARS-CoV-2 positive cases
detected in the Brazilian state of Maranhdo (Northeastern region), between
January and February 2021 [347]. S:W152C was later reported in one genome
from Parana [333].

6.5 B.1.525 (Eta)

Named eta by WHO, VUI-21FEB-03 (previously VUI-202102/03) by PHE,
20A/S484K by NextStrain, and formerly known as UK1188, this lineage harbors
E484K, AH69/AV70, and a F888L in Spike, I82T in M, and del2/3 in ORF6. As of
March 5, it had been detected in 23 countries.
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6.6 B.1.526 (Iota)

Named iota by WHO and 20C/S.484K by NextStrain, this variant, harboring E484K,
was discovered in New York City in November 2020. As of April 11,2021, the variant
has been detected in at least 48 US states and 18 countries. In a pattern mirroring
B.1.429 of California, B.1.526 was initially able to reach relatively high levels in
some states, but in the Spring of 2021, it was outcompeted by the more transmis-
sible B.1.1.7. Spike from B.1.526 showed a ~1.8-fold increase over D614G [155].
Iota can cause vaccine breakthrough infections [348]. PANGOLIN distinguishes
several subclades:

e B.1.526.1

e B.1.526.2 harbors L5F, T95I, D253G, E484K, D614G and A701V and was
reported in northeast of the USA [349, 350]

e B.1.526.3

6.7 B.1.427/B.1.429 (Epsilon)

Named 20C/S.452R or 21C by NextStrain, or CAL.20C, this lineage was first named
as epsilon VOI by WHO on March 5, 2021, and reclassified as Alert for further
monitoring on July 6, 2021. It emerged around May 2020 in California and increased
from 0 to >50% of sequenced cases from September 1, 2020, to January 29, 2021,
exhibiting an 18.6-24% increase in transmissibility relative to wild-type circulating
strains. The variants share the L452R substitution (which increases ACE2-Fc binding
by ~2.7 221 folds), while S131 and W152C (which do not affect ACE2 affinity)
only occur in B.1.429. Spike from B.1.429 augmented ACE2-Fc interaction by ~2.8
folds [155]. It has to twofold increased viral shedding in vivo and increased L452R
pseudovirus infection of cell cultures and lung organoids. Antibody neutralization
assays showed 4.0 to 6.7-fold and 2.0-fold decreases in neutralizing titers from
convalescent patients and vaccine recipients, respectively [104]. While the WHO
classifies them as a VOI (epsilon), the CDC classifies them as a VOC.

6.8 B.1.617-Derived Variants (Including Kappa and Delta)

It was first detected on October 5 2020 in Maharashtra, India, and jumper to 80%
prevalence on April 1, overwhelming B.1.1.7 [101]. There are 3 sublineages of
B.1.617, which have some differences in their exact mutations, but all sharing (in
addition to D614G) L452R and P68IR and, albeit at varying frequencies, G/42D in
Spike and R203M and D377Y in N.

e B.1.617.1 (initially known as B.1.617, but later renamed kappa by WHO,
21A/S.154K in NextStrain, or VUI-21APR-01 by PHE) additionally has the
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E154K, E484Q and Q1071H mutations. Hamsters infected with B.1.617.1 have
more body weight loss, more lung lesions and hemorrhage compared to B.1
wild-type [351]. B.1.617.1 Spike have lower ACE2 affinity than D614G Spike
[155].

— B.617.1 v.1 additionally harbors 7951
— B.617.1 v.2 additionally harbors H1101D

e Delta VOC actually consists of 4 sublineages sharing additional T19R, del157/158,
T478K, and D950N in Spike and I82T in M. The receptor-binding beta-loop-beta
motif adopts an altered but stable conformation causing separation in some of the
antibody-binding epitopes [352].

— B.1.617.2 (aka VUI-21APR-02 by PHE) is the references strain of Delta.
del157/158 in NTD of Spike lead to immune evasion through antibody escape
[353]. B.1.617 entered 2 out of 8 cell lines tested (including Calu-3 lung cell
[354]) with increased efficiency. K77T and T9S5I (typical of B.1.617 v.1),
L216F, A222V, and G1124V have also been rarely reported. B.1.617.2 is
resistant to bamlanivimab [354, 355] and moderately evades convalescent
or BNT162b2-elicited sera [354, 355], that is similar in magnitude to the
loss of sensitivity conferred by L452R or E484Q alone. Furthermore P681R
mutation significantly augments syncytium formation in Calu-3 cells [354]
and hamsters [356] compared to the B.1.617.1 Spike protein, potentially
contributing to increased pathogenesis observed in hamsters and infection
growth rates observed in humans [356]. In hamsters, higher shedding of subge-
nomic RNA has been reported for 14 day, and moderate lung pathology has
been reported in 40% of infected animals [357]. It can cause vaccine break-
through events [358] and has been reported to infect Asiatic lions (Panthera
leo persica) in Arignar Anna Zoological Park, Chennai, Tamil Nadu, India
[359]. Analysis of an outbreak involving 167 cases from China showed that
the time interval between exposure to first positive PCR was shorter (4 vs.
6 days), the initial viral load 1260-folds higher and more infectious (80%
vs. 19% harboring > 6 x 10° viral copies/ml) than in 19A/19B infection:
some minor intra-host single nucleotide variants (iISNVs) could be transmitted
between hosts and finally fixed in the virus population during the outbreak. The
minor iSNVs transmission between donor-recipient contribute at least 4 of 31
substitutions identified in the outbreak suggesting some iSNVs more likely to
arise and reach fixation when the virus spread rapidly [360]. A larger study
from Netherlands showed that Delta variant NPS had about fourfold higher
viral loads compared to the non-VOC or Alpha variants [361]. Neutraliza-
tion by CCP, BNT162b2, mRNA-1273 and Ad26.COV2.S-elicited antibodies
is reduced by 3-5 folds, while REGN10933 efficacy is reduced by 12 folds
compared to wild-type (having only a minor effect on the activity of the REGN-
COV2 cocktail) [362]. PANGOLIN distinguishes 33 Delta sublineages termed
AY.1 to AY.33. AY.1 and AY.2 harbor K417N and were initially colloquially
referred as “Delta plus”.
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— AY.1 (aka B.1.617.2.1) was first reported in India on April 2021 and spread to
20 countries as of July 2021 (expecially Portugal, Japan, USA, UK and Switzer-
land) [363]. It additionally harbors W258L and K417N (as seen in B.1.351).
R214L and K558N and S1261F have also been rarely reported. It also harbors
mutations in the genome at ORFla (A1306S, P2046L, P2287S, V2930L,
T32551, T3646A), ORF1b (P314L, G662S,P1000L, A1918V), ORF3a (S26L),
M (I82T), ORF7a (V82A, T120I), ORF7b (T40I), ORFS8 (del119/120) and N
(D63G, R203M, G215C,D377Y). Neutralization by CCP, BNT162b2, mRNA-
1273 and Ad26.COV2.S-elicited antibodies is reduced by 3-5 folds, while
REGN10933 efficacy is reduced by 92.7 folds compared to wild-type (having
only a minor effect on the activity of the REGN-COV2 cocktail) [362].

— AY.2 additionally harbors V70F E156G, A222V and K417N. K356N and
V1228L have also been rarely reported

— AY.3 additionally harbors E156G

AY.3.1 never harbors T95I nor A222V and harbors F157C and R158G at
about 10% frequencies

e B.1.617.3 (aka VUI-21APR-03 by PHE) has the E484Q mutation and, despite its
name, was the first sublineage of this variant to be detected, in October 2020 in
India. It was initially very improperly known as “double mutant,” additionally
harboring T19R, dell57/158, E484Q, D950N and E1072K. V6F, A27V, del69-70,
F79S, del142, del144-145, H655Y, Q779K, del950 and H1101D are also rarely
reported in Spike. Mutations at L452R and E484Q increased the stability and
intra-chain interactions in the Spike protein, which may change the interaction
ability of human antibodies [364]. It also harbors P67S in N. This sublineage has
remained relatively uncommon compared to the two other sublineages, B.1.617.1
and B.1.617.2, which were both first detected in December 2020. The unprece-
dented growth of B.1.617.2 cases in India occurred in the background of high
seropositivity, but with low median nAb levels, in a serially sampled cohort:
vaccination breakthrough cases over this period were noted, disproportionately
related to VOC in sequenced cases, but usually mild [365].

Out of total 38 identified mutations among Indian SARS-CoV-2 Nsp13 protein,
four mutant residues at position 142 (E142), 245 (H245), 247 (V247) and 419 (P419)
are localized in the predicted B cell epitope region [366].

6.9 C.37 (Lambda)

Initially classified asaB.1.1.1 sublineage, it was designated VOI lambda by WHO on
June 14,2021. It presents a deletion in the ORF1a gene (A3675-3677), also present in
B.1.1.7, B.1.351 and P.1. It displays a novel deletion and multiple non-synonymous
mutations in the Spike gene (ARSYLTPG246-252, G75V, T76l, L452Q, F490S,
T859N), and I82T in M. A subvariant (PV29369) has been reported which contained
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additional changes compared to the consensus sequence including a large 13 amino
acid deletion (AT63:G75) instead of G75V and T761 NTD substitutions and an addi-
tional E471Q substitution in the RBD [224]. T76I and L452Q mutations cause higher
infectivity, while the RSYLTPGD?246-253N deletion is responsible for evasion from
nAbs [367]. Initially reported in Lima, Peru, in late December 2020, it accounted for
48% of genomes in Lima between January 1 and March 18, 2021. Further RT-qPCR
screening for VOCs suggests that it is widespread in other regions of Peru. Many
imported cases from Peru have been reported [368]. It is also expanding in Chile and
Argentina, and there is evidence of onward transmission in Colombia, Mexico, the
USA, Germany, and Israel [369, 370]. Neutralization by CCP, BNT162b2 [224, 362],
mRNA-1273 [224, 362] and Ad26.COV2.S [362]-elicited antibodies is reduced by
3-5 folds [362], while REGN10933 and REGN 10387 efficacy is minimally reduced
compared to wild-type [362].

6.10 P.3 (Theta)

Also named B.1.1.28.3, VUI-2IMAR-02 by PHE, PHL-B.1.1.28, or 21E by
NextStrain or GR/1092K.V1 by GISAID, it was designated VOI theta by WHO
on Mar 24, 2021 and then reclassified as Alter for further monitoring on July 6,
2021. It was first reported from the Central Visayas region of the Philippines, and
imported cases were reported in the USA [371] and elsewhere. This emergent variant
is characterized by 13 lineage-defining mutations, including ALGV141-143, E484K,
N501Y, D614G, P681H, E1029K, H1101Y and V1176F in Spike, D1554G, L3201P,
D3681E, L3930F, P4715L, A5692V in ORFlab, and K2Q, R203K, and G204R in
ORFS [372, 373].

6.11 Other Variants Under Monitoring (VUM)

Many more variants are being reported with increasing sequencing efforts worldwide,
some of them having meaningful mutations. They are variably referred as “variants
under monitoring (VUM)” by ECDC or “Alerts for further monitoring” by WHO.
Examples include:

e AV.1 (aka VUI-21MAY-01 in PHE, and belonging to GISAID clade GR) was first
reported from South Yorkshire, UK, in March 2021, harboring 23 additional muta-
tions (including D80G, T95I, G142D, A144, N439K, E484K, D614G, P681H,
11130V, D1139H) when compared to the majority of other samples of the parent
lineage B.1.1.482 [374]. It also harbors A63T and H125Y in M, and I157V in N.
It was designated an Alert for further monitoring on May 26, 2021.

e anew variant in West Bengal, India, which is characterized by the presence of 11
co-existing mutations including D614G, P681H and V1230L in S-glycoprotein
[375].
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e A.VOLV2 from Angola harboring 31 amino acid substitutions. The 11 Spike
mutations include 3 substitutions in the RBD (R346K, T478R and E484K); 5
substitutions and 3 deletions in the N-terminal domain, some of which are within
the antigenic supersite (AY 144, R246M, ASYL247-249 and W258L); and 2
substitutions adjacent to the S1/S2 cleavage site (H655Y and P681H) [376]. It
reduces neutralizing activity of mRNA-1273-elicited nAb by 8-folds [377].

e A.23 viral lineage (belonging to NextStrain clade 19B), is characterized by three
Spike mutations F157L, V367F and Q613H, was first identified in a Ugandan
prison in July 2020, and then spilled into the general population adding additional
Spike mutations (L141F and P681R) to comprise lineage A.23.1 by September
2020—with this virus being designated a VOI in Africa and with subsequent
spread to 26 other countries [115].

— A.23.v1 preserves neutralization by mRNA-1273-elicited sera [224, 377]
— A.23.v2 also includes R102I and E484K

e A.27.RN from Germany comprising L18F, L452R, N501Y, A653V, H655Y,
D796Y and G1219V with a later gain of A222V. It emerged in parallel with
the B.1.1.7 variant, increased to >50% of all SARS-CoV-2 variants by week 5
of 2021. Subsequently, it decreased to <10% of all variants by calendar week 8
when B.1.1.7 had become the dominant strain. Antibodies induced by BNT162b2
vaccination neutralized it with a 2-threefold reduced efficacy as compared to the
wild-type and B.1.1.7 strains [378]

e AP.1 (https://cov-lineages.org/lineages/lineage_AP.1.html), aka the *“Wales
lineage” descending from B.1.1.70 within clade 20B. With already 23 mutations
difference to the Wuhan reference virus, the lineage additionally evolved the
Spike mutation N501Y and was subsequently predominantly detected in Wales.
The mutation is estimated to have emerged around Aug 2020. Mobility of the virus
to Saxony, Germany, can be detected, coinciding with an additional mutation in
ORF3a:V259A [91].

e AT.1 (belonging to GISAID clade GR) was reported from Russian Federation on
January 2021 and was designated as Alert for further monitoring by WHO on
June 9, 2021

¢ B.1.x (including B.1.342.1) from California harboring Spike mutations S494P,
N501Y, D614G, P681H, K854N, and E1111K and N:M234I (G28975A), which
also appears in Variants of Interest B.1.526 and P.2 (G28975T). Of interest, a
35-bp deletion in ORFS causes the sequence to be automatically rejected from
both GISAID and GenBank repositories [379].

e B.1.111 from Colombia harboring L.249S and E484K [190]

e B.1.177.637.V2/20E (VOI1163.7.V2) from Spain harboring E484K and A141-
144 in addition to D1163Y and G1167V which characterize VOI1163.7.V1 [380].

e B.1.214.2 (belonging to GISAID clade G) first appeared in multiple countries in
November 2020 and was designated as Alert for further monitoring by WHO on
June 30, 2021

e B.1.362 4+ L452R variant demonstrated a X4-fold reduction in neutralization
capacity of sera from BNT162b2-vaccinated individuals compared to a wild-type
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strain. The variant infected 270 individuals in Israel between December 2020 and
March 2021, until diminishing due to the gain in dominance of the Alpha variant
in February 2021 [381].

B.1.1.207, first reported in August 2020 in Nigeria, harbors P681H. As of late
December 2020, this variant accounted for around 1% of viral genomes sequenced
in Nigeria. As of May 2021, it had been detected in 10 countries.

B.1.1.318 (aka VUI-21FEB-04 or VUI-202102/04 by PHE on February 24, 2021,
and belonging to GISAID clade GR and NextStrain clade 20B): 16 cases of it
have been detected in the UK, and it is largely prevalent in Mauritius [382]. It
is characterized by 14 non-synonymous mutations in the S gene, with 5 encoded
amino acid substitutions (T95I, E484K, D614G, P681H, D796H) and AY144
in the Spike glycoprotein. It also harbors I82T in M and del309 in N. It was
designated as Alert for further monitoring by WHO on June 2, 2021.

B.1.466.2 was designated by WHO an Alert for further monitoring on April 28,
2021, and was first reported from Indonesia

B.1.1.519 (belonging to GISAID clade GR and NextStrain clade 20 B) in Mexico
harboring the mutations T478K, P681H, and T732A, which rapidly outcompeted
the preexisting variants in 2021 [383]. It was designated as Alert for further
monitoring by WHO on June 2, 2021.

B.1.616 is a VUI which caused a nosocomial outbreak in Western France in
January 2021, poorly detected by RT PCR on nasopharyngeal samples, with high
lethality (HR 4.2) [384]). It is characterized by 9 amino acid changes and one dele-
tion in the S protein (H66D, G142V, Y144del, D215G, V483A, D614G, H655Y,
G669S, Q949R, N1187D) in comparison with the original Wuhan strain, several
unique amino acid changes in the E (F20L, T30I), M (H125Y), and N (T3251)
proteins, in ORFlab (T265I, N1324S, T1638I, S2261Y, Y3160H, L3606F, P314L,
Q813R,L1681F, T25371, K2674R) and ORF3 (Q57H) as well as by a deletion and
frameshift in 2 proteins that antagonize various steps of type I interferon (IFN-I)
production and signaling: ORF6 (del23-32 4 frameshift resulting in 5 additional
aa (HKPHN) at C-terminus) and replacement of the stop codon of ORF7a (¥*122R)
resulting in a 5 amino acids extension at its C-terminus. It has not been detected
after April 2021.

B.1.618 was first reported in October 2020. Spike has mutations A145-146,
E484K and D614G, and is partly resistant to convalescent sera, bamlanivimab
and mRNA vaccines-elicited antibodies [385]. As of April 23, 2021, the CoV-
Lineages database showed 135 sequences detected in India, with single-figure
numbers in each of 8 other countries worldwide

B.1.620, harboring Spike mutations E484K, S477N and deletions HV69del,
Y 144del, and LLA241/243del, was imported from Central Africa to Europe [386].
B.1.621 (also named 21H in NextStrain and belonging to GISAID GH clade) from
Colombia in January 2021 with the insertion 145N in the N-terminal domain and
amino acid change N501Y, E484K, and P681H [387], was designated an Alert
for further monitoring by WHO on May 26, 2021.

C.36.3 and C.36.3.1 (also known as VUI-21MAY-02 by PHE, and belonging to
NextStrain clade 20D and GISAID clade GR) was reported in multiple countries
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since January 2021 [388]. It harbors A43S in ORF 7b, I82T in M, and R203K,
G204R and G212V in N. It was designated as Alert for further monitoring by
WHO on June 16, 2021.

e R.1 lineage from Japan and Arizona (USA) harboring W152C, E484K, N501Y
and G769V [193], which has become prevalent in Tokyo as of March 2021 but
for which there is currently no evidence of increased severity [389]. Together
with R.2 lineage, it falls within GISAID GR lineage and NextStrain 20B and was
designated by WHO as an Alert for further monitoring on April 7, 2021.

There is a significant and stepwise increase in RBD-ACE?2 affinity at low temper-
atures, resulting in slower dissociation kinetics. This translated into enhanced inter-
action of the full Spike to ACE2 receptor and higher viral attachment at low tempera-
tures [390]. Interestingly, variants harboring the N501Y mutation bypass this require-
ment and exhibited an increase in ACE2 binding compared to D614G Spike at both
4°C and 37°C, while this phenotype was only observed at 37°C with Spike from
B.1.617.1,B.1.617.2, B.1.526 and B.1.429 [155].

According to a mathematical model and the speed of Spike evolution, another
upcoming COVID-19 peak would come around July 2021 and disastrously attack
Africa, Asia, Europe and North America [391].



Chapter 7 ®)
Characterization of SARS-CoV-2 Chack or
Variants

Abstract Sequencing of the Spike gene is definitively the gold standard to define
variants because it allows the recognition of all mutations/deletions/insertions
affecting the whole viral sequence. However, this method is technically laborious
and time-consuming.

Sequencing of the Spike gene is definitively the gold standard to define variants
because it allows the recognition of all mutations/deletions/insertions affecting the
whole viral sequence. However, this method is technically laborious and time-
consuming. Currently, the protocol for SARS-CoV-2 whole genome sequencing
developed by the ARTIC consortium (https://artic.network/ncov-2019) is applied
worldwide but requires 4-5 days. A faster, but error-prone method is sequencing
of the RBD segment. Nevertheless, sequencing cannot always be scaled or imple-
mented in some settings. HiSpike is a novel three-step method for high-throughput
targeted next generation sequencing (NGS) of the Spike gene in less than 30 h: it can
sequence tenfold more samples compared to the conventional ARTIC method and at
a fraction of the cost [392].

Alternative, easier-to-perform approaches including variant-specific RT-PCR
and/or RFLP analysis of selected RT-PCR amplicons are awaiting full validation in
the field. As previously explained, AHV69-70 causes SGTF in the Applied Biosys-
tems TaqPath® COVID-19 PCR assay (Thermo Fisher), but under changed ecology, it
is no longer conclusive for the B.1.1.7 variant. Nevertheless, in the US and other coun-
tries, screening samples for the SGTF helped to identify potential B.1.1.7 variants
for sequencing prioritization. Thermo Fisher, however, has not released their Spike
probe sequence, so the assay needs to be recreated to be used more broadly. Vogels
et al. designed a AHV69-70 primer set that was able to distinguish between variant
and non-variant samples similar to the TagPath® SGTF signature. They combined
the AHV 69/70 set in a multiplexed PCR assay with the CDC N1 set as a positive
control, and the CDC RNase P set as an extraction/sample control as an open-source
method to screen for viruses like B.1.1.7 with the AHV69/70 deletion. Essentially, it
was an open-source “hack” of the TaqPath® assay [393]. Multiplex mutation-specific
PCR-based assays with same-day reporting have also been developed:
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e a PCR which differentially detects N501Y and AHV69-70 has been proposed an
effective screening for samples worth of being sequenced, and able to discrimi-
nate potential B.1.1.7 (A69-70HV *N501Y ~) from P.1 and B.1.351 (AHV69-
70™N501Y™"): the test was 100% specific when compared to PCR, with a limit of
detection of 5000 copies/ml [394].

e another multiplex PCR was able to detect L450R, E484K, N501Y and AHV69-70
[395]

Finally, reverse-transcription reverse-complement polymerase chain reaction (RT-
RC-PCR) has been proposed to rationalize reverse transcription and NGS library
preparation into a single closed tube reaction [396].



Chapter 8 ®)
Predicting the Functional Consequences e
of Mutations

Mapping sequence data with the available structures from the Protein Data Bank
(PDB), it is possible to generate hypothesis about the role of Spike mutations in
ACE2 binding. Methodologically, there are several possible approaches. The most
obvious is moving from patients getting reinfected from different clades, or from
mutations detected in circulating Spike variants, and to verify neutralization from
convalescent sera collected during the previous waves [18, 100].

In silico modeling can also be used. The ddG represents the difference in protein—
protein affinity upon mutation: it can be measured using the Rosetta Flex ddG
method and validated using surface plasmon resonance [397, 398]. GRID-based
pharmacophore model (GBPM) has been used to identify mutations in both Spike
and ACE2 that reciprocally affect binding [399]. Another computational model
has been developed based on structure-dynamics-energy-based strategy [400]. All-
atom steered molecular dynamics (SMD) simulations and microscale thermophoresis
(MST) experiments have also been used to characterize the binding interactions
between ACE2 and RBD [401].

As a third possibility, deep mutational scanning (DMS) predicts protein
expression, ACE2 binding and mAb binding [142]. The method was first
deployed with yeast display libraries [137] and then evolved to phage display
libraries (https://jbloomlab.github.io/SARS-CoV-2-RBD_MAP_clinical_Abs/) [44]
and finally mammalian cell surface display [402]. nAb binding is common within
the fusion peptide and in the linker region before heptad repeat (HR) region 2. The
complete escape maps forecast SARS-CoV-2 mutants emerging during treatment
with mAbs and allow the design of escape-resistant nAb cocktails. DMS was also
applied to polyclonal antibodies in CCP [403].

Lastly, mapping crystallographically determined interfaces between Spike
mutants and nAb which do not disrupt ACE2 binding [404].

The “Genome to Phenotype (G2P)”-UK National Virology Consortium (https://
www.ukri.org/news/national-consortium-to-study-threats-of-new-sars-cov-2-var
iants/) was the first newly created institution born to make such predictions.
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Chapter 9 ®)
Efficacy of Anti-Spike Vaccines e
and Monoclonal Antibodies Against
SARS-CoV-2 Variants

Abstract This chapter summarizes available in vitro evidences of single vaccines
and therapeutics against the main SARS-CoV-2 variants, and discusses features such
as duration of protection, postponing second doses, heterologous boosting, third
doses to immunosuppressed patients who did not seroconvert, and third doses to
immunocompetent patients to counteract decline in antibody levels.

This paragraph represents a huge update of a review previously published in June
2021 from this author and colleagues [405]. Table 9.1 reports available evidences to
date. Interpretation of results was simplified using a semiquantitative scale according
to the number of folds decrease in neutralization efficacy. For each variant, the
estimated reinfection rates and the proven reinfection cases (strains from each
episode sequenced) are reported. Each variant was indicated using both the offi-
cial (PANGOLIN and NextStrain) and the local (VUI/VOC/VOI) naming systems,
and colloquial terms (e.g., “UK variant”) in order to provide comprehensive associa-
tion. The main, alarming finding is the lack of efficacy of single-agent bamlanivimab
against most E484K-carrying variants. Accordingly, the FDA has recently withdrawn
its emergency use authorization as a single agent, leaving the authorization only for
usage in combination with etesevimab. Nevertheless, Q493R mutation, causing resis-
tance to both mAbs, has been recently reported by our group [200]. High-frequency
Spike mutations R346K/S, N439K, G446V, L455F, V483F/A, E484Q/V/A/G/D,
F486L, F490L/V/S, Q493R and S494P/L might compromise some of mAbs in clin-
ical trials [406]. A large, anonymized study evaluated 25 clinical-stage therapeutic
antibodies for neutralization activity against 60 pseudoviruses bearing Spikes with
single or multiple substitutions in several Spike domains, including the full set of
substitutions in B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), B.1.429 (Epsilon),
B.1.526 (Iota), A.23.1 and R.1 variants. 14 of 15 single antibodies were vulnerable
to at least one RBD substitution, but most combination and polyclonal therapeutic
antibodies remained potent. Key substitutions in the Spike protein of SARS-CoV-2
variants can predict resistance to mAbs, but other substitutions can modify the effects
[407].
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While the in vitro findings summarized here wait for confirmatory clinical
evidences, in the meanwhile, they could orient therapeutic and preventive strategies.

No in vitro evidences of efficacy against SARS-CoV-2 variants have been
published for several widely used vaccines (e.g., Sinopharm’s BBIBP-CorV) or only
predictions were available in other cases (e.g., CureVac’s CVnCOV [408]), stressing
the need for more studies.

Meta-analysis of 56 vaccine studies, including 2,483 individuals and 8,590
neutralization tests, showed that, compared with lineage B, there was a 1.5-fold
reduction in neutralization against the B.1.1.7, 8.7-fold reduction against B.1.351 and
5.0-fold reduction against P.1. The estimated neutralization reductions for B.1.351
compared to lineage B were 240.2-fold reduction for non-replicating vector plat-
form, 4.6-fold reduction for RNA platform and 1.6-fold reduction for protein subunit
platform. The nAbs induced by administration of inactivated vaccines and mRNA
vaccines against lineage P.1 were also remarkably reduced by an average of 5.9-fold
and 1.5-fold [409]. Efficacy of CCP from previous waves is also generally lowered:
CCP from a donor affected during the early 2020 protected against SARS-CoV-2
WA-1 wild-type strain but was insufficient to protect against challenge with B.1.1.7
and B.1.351 in a mouse model [410].

The correlation between these in vitro data and real-life vaccine efficacy
(VE) shows that nAb levels are a good correlated of protection (CoP). Khoury et al.,
assuming that the neutralization level required for 50% protection against detectable
SARS-CoV-2 infection was 20.2% of the mean convalescent sera level and that the
neutralization level for 50% protection from severe infection was 3% of the mean
convalescent sera level, reported that the decay of the neutralization titer over the first
250 days after immunization predicts a significant loss in protection from SARS-
CoV-2 infection, although protection from severe disease should be largely retained.
Neutralization titers against some SARS-CoV-2 VOC were reduced compared with
the vaccine strain [411]. Similarly, Earle et al. evaluated the relationship between effi-
cacy and in vitro neutralizing and binding antibodies of 7 vaccines. Once calibrated to
titers of human convalescent sera reported in each study, a robust correlation was seen
between neutralizing titer and efficacy (o = 0.79) and binding antibody titer and effi-
cacy (p = 0.93), despite geographically diverse study populations subject to different
forces of infection and circulating variants, and use of different endpoints, assays,
convalescent sera panels and manufacturing platforms [412]. Accordingly, break-
through infections among 1497 BNT162b2-vaccinated healthcare workers happened
in those with lower nAb titers during the peri-infection period (case-to-control ratio,
0.361), and higher peri-infection neutralizing antibody titers were associated with
lower infectivity (higher Ct values). Similarly, mRNA-1273-elicited sera binding and
nAb titers correlated with COVID-19 risk and vaccine efficacy and likely have utility
in predicting mRNA-1273 vaccine efficacy against COVID-19. Modelling frame-
works can identify correlates of protection based on live SARS-CoV-2 variants nAb
titres from vaccinated individuals. They have been to predict vaccine effectiveness
in overall populations and age subgroups. It was validated by predicting effectiveness
against the B.1.167.2 (Delta) variant. The predictions, of 51.7% (34%, 69%) after one
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and of 88.6% (76%, 97%) after two vaccine doses, were close to the corresponding
means, 49% and 85.4%, of observations in real-life effectiveness studies.

A case—control study showed that, compared with unvaccinated individuals,
BNT162b2 vaccinees with documented SARS-CoV-2 infection at least a week after
the second dose were disproportionally infected with B.1.351 (odds ratio of 8:1),
while those infected between 2 weeks after the first dose and 1 week after the second
dose, were disproportionally infected by B.1.1.7 (odds ratio of 26:10), suggesting
reduced VE against both VOCs under different dosage/timing conditions. Neverthe-
less, the B.1.351 incidence in Israel to date remains low and vaccine effectiveness
remains high against B.1.1.7, among those fully vaccinated. These results overall
suggest that vaccine breakthrough infection is more frequent with both VOCs, yet a
combination of mass-vaccination with two doses coupled with non-pharmaceutical
interventions control and contain their spread [413]. With mRNA-1273, binding
of vaccine-elicited anti-RBD antibodies is more broadly distributed across epitopes
than for infection-elicited anti-RBD antibodies [414]: accordingly, greater IgG,, IgG3
and IgG, responses and higher ratios of (IgG; + 1gG3)/(IgG, + IgGy4) were seen
in subjects vaccinated with either BNT162b2 or mRNA-1273 than in convalescents
[415]. This greater binding breadth means single RBD mutations have less impact on
neutralization by vaccine sera than convalescent sera. Another striking feature is that
for BNT162b2 post-first dose vaccination infection did not increase IgG titers, so
that individuals infected post-dose one should receive the second [416]. CoronaVac
for which no in vitro efficacy data are available was 42% effective in the real-world
setting of extensive P.1 transmission, but significant protection was not observed until
completion of the two-dose regimen [417]. A meta-analysis by Shapiro et al. found
that, on average, the vaccine efficacy (VE) against any disease with infection was
85% after a full course of vaccination. The VE against severe disease, hospitaliza-
tion or death averages close to 100%. The average VE against infection, regardless
of symptoms, was 84%. The average VE against B.1.1.7 [418] B.1.1.28 (P1) and
B.1.351 was 86%, 61% and 56%, respectively [419]. Questions also stem about the
clinical value of different overall antibody levels after each type of vaccine: possibly
due to the higher S-protein delivery, titers peaked at week 6 for both vaccines, but
were significantly higher for mRNA-1273 vaccine on days 14-20 (p < 0.05), 4248
(p < 0.01), 70-76 (p < 0.05), 77-83 (p < 0.05), and higher for BNT162b2 vaccine
on days 28-34 [420].

Additionally, a single injection of mRNA-1273 or BNT162b2 has been shown
enough to induce novel antibody specificities that protect against the B.1.351 VOC
[305, 421]: a similar phenomenon has been reported after 2 BNT162b2 doses against
B.1.1.7[422]. NAbstiters increased in previously infected BNT162b2 vaccinees rela-
tive to uninfected vaccinees against every variant tested: 5.2-fold against B.1.1.7, 6.5-
fold against B.1.351, 4.3-fold against P.1 and 3.4-fold against original SARS-CoV-2
[423]. Similarly, a single dose of either BNT162b2 or ChAdOx 1 vaccines in convales-
cents raised the titer of antibodies against the SARS-CoV-2 vaccine strain (B.1) and
three major VOCs (B.1.1.7, B.1351 and P.1). Lineages with E484K and N501Y/T
(e.g., B.1.351 and P.1) have the greatest reduction in neutralization, followed by
lineages with L452R (e.g., B.1.617.2) or with E484K (without N501Y/T). While
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both groups retained neutralization capacity against all variants, plasma from previ-
ously infected vaccinated individuals displayed overall better neutralization capacity
when compared to plasma from uninfected individuals that also received two vaccine
doses [424]. Vaccination and natural SARS-CoV-2 infection elicit neutralizing anti-
body responses that are most potent against variants that bear spike mutations present
in the immunizing exposure. This trend is exemplified by variants with mutations
at the spike E484 position, which were all neutralized more effectively by E484K-
exposed serum than other serum types. Importantly, it has been shownthat B.1.617.2
(Delta) is neutralized more effectively by serum elicited by prior exposure to two
different variants — B.1.429 and B.1.1.519 — which have separate subsets of spike
mutations overlapping with mutations in B.1.617.2. Given that different regions
throughout the world have experienced variable transmission of different variants
prior to the dominance of B.1.617.2, these results suggest that acquired immunity
in the population will differ significantly depending on the previous prevalence of
variants in each region. Furthermore, these results demonstrate that specificity is
strongest for serum neutralizing variants fully homologous to the exposure, but even
single shared spike mutations, particularly those in highly antigenic regions such as
the RBD, can enhance cross-neutralization.

A single vaccine dose to convalescents is nowadays a well-accepted approach
that saves money and side effects [425]: e.g., one dose of the BNT162b2 vaccine
increases nAb titers againstthe B.1.1.7,B.1.351 and P.1 variants in persons previously
infected with SARS-CoV-2 [426].

Apart from efficacy, many topics remain under investigation for anti-Spike
vaccines:

e vaccine-elicited T cell immunity: while nAbs are just one arm of the adap-
tive immune response to vaccines, very few data are available for protection
from T cell immunity, which would be especially relevant in the ones who
do not mount antibody responses. Gallagher et al. found detectable but dimin-
ished T cell responses to Spike variants (B.1.1.7, B.1.351 and B.1.1.248) among
BNT162b2 or mRNA-1273 vaccinated donors [427]. BNT162b2 or mRNA-
1273-elicited Spike-specific T cells responded similarly to stimulation by Spike
epitopes from the ancestral, B.1.1.7 and B.1.351 variant strains, both in terms
of cell numbers and phenotypes. In infection-naive individuals, the second dose
boosted the quantity but not quality of the T cell response, while in convales-
cents, the second dose helped neither. Spike-specific T cells from convalescent
vaccinees differed strikingly from those of infection-naive vaccinees, with pheno-
typic features suggesting superior long-term persistence and ability to home to
the respiratory tract including the nasopharynx [428].

e duration of protection: according to a mathematical model by Luo et al.,
after mRNA-1273 vaccination, pseudovirus neutralization test against B.1.351
is expected to fall below the lower limit of detection of 20 geometric mean titers
on day 100; variant P.1 on day 202, variant B.1.429 on day 258; and variant B.1.1.7
on day 309 [429]. Real-world data instead suggested that binding and functional
antibodies against B.1.1.7,B.1.351, P.1, B.1.429 and B.1.526 variants persisted in
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most subjects, albeit at low levels, for 6 months after the primary series of mRNA-
1273 [430]. A similar declining trend in VE against symptomatic COVID-19
(—6% every 2 months) was proven in real life at 6 months for BNT162b2 [431]. A
model predicts and exemplifies several possible consequences for vaccine efficacy
in VOC infections: (1) a delay in the onset of vaccine efficacy against VOC; (2) a
transient increase in susceptibility to breakthrough infection with VOC compared
to non-VOC as a function of time after vaccination. Preliminary data indicate
that such phenomena are observed in studies of the B.1.1.7 and B.1.351 variants.
Ignoring the strong dependence on the time post-vaccination can lead to contradic-
tory reports of relative efficacy against VOC versus non-VOC, with implications
on mitigation strategies against VOC and the design of vaccine efficacy studies
[432]. nAb titres declined substantially six months after two doses of CoronaVac
among older adults, but a booster dose rapidly induces robust immune responses.
Natural immunity confers longer lasting and stronger protection against infection
(RR = 5.96), symptomatic disease (RR = 7.33) and hospitalization caused by
the Delta variant of SARS-CoV-2, compared to the BNT162b2 two-dose vaccine-
induced immunity. Individuals who were both previously infected with SARS-
CoV-2 and given a single dose of the vaccine gained additional protection against
the Delta variant. In conclusion, BNT162b2-induced protection against infection
appears to wane rapidly after its peak right after the second dose, but it persists at
arobust level against hospitalization and death for at least 6 months following the
second dose. At 6-months after first BNT162b2 dose, compared to HCW, elderlies
have significantly lower anti-SARS-CoV-2 S1-, full Spike- and RBD-IgG seropos-
itivity rates, IgG levels, serum neutralization of Delta VOC and T cell reactivity.
In July 2021 in Israel, the rates of both documented SARS-CoV-2 infections and
severe COVID-19 exhibit a statistically significant increase as time from second
vaccine dose elapsed. Elderly individuals (60+) who received their second dose in
March 2021 were 1.6 times more protected against infection and 1.7 times more
protected against severe COVID-19 compared to those who received their second
dose in January 2021. Similar results were found for different age groups.

e postponing second doses has been widely implemented in order to optimize
vaccine delivery under manufacturing bottlenecks. In non-convalescent elderlies
higher than age 80 who received the second dose of BNT162b2 after 12 weeks
instead of 3, the peak antibody response was 3.5-fold higher, but cellular immune
responses were 3.6-fold lower [433].

e heterologous boosting: heterologous immunization strategy combining inac-
tivated and mRNA vaccines can generate robust vaccine responses and
therefore provide a rational and effective vaccination regimen [434].
ChAdOx/BNT162b2 booster vaccination was largely comparable to homologous
BNT162b2/BNT162b2 vaccination and overall well tolerated [435]. No major
differences were observed in the frequency or severity of local reactions after
either of the vaccinations. In contrast, notable differences between the regi-
mens were observed for systemic reactions, which were most frequent after
prime immunization with ChAdOx (86%) and less frequent after homologous
BNT162b2/BNT162b2 (65%), or heterologous ChAdOx/BNT162b2 boosters
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(48%) [436-438]. Among 229 vaccinees that received a BNT162b2 boost 9 to
12 weeks after ChAdOx1 nCoV-19 prime, nAb titers were significantly higher
than after homologous ChAdOx1 nCoV-19 and even than homologous BNT162b2
vaccination [439]. Heterologous regimen induced Spike-specific IgG, nAbs, and
Spike-specific CD4" T cells, which were significantly more pronounced than after
homologous vector boost, and higher or comparable in magnitude to the homolo-
gous mRNA regimens. Moreover, Spike-specific CD8 T cell levels after heterol-
ogous vaccination were significantly higher than after both homologous regi-
mens [440]. Neutralizing activity against the prevalent strain B.1.1.7 was 3.9-fold
higher than in individuals receiving homologous BNT162b2 vaccination, only
twofold reduced for variant of concern B.1.351, and similar for variant B.1.617
[441]. While both ChAdOx and BNT162b2 boosted prime-induced immunity,
BNT162b2 induced significantly higher frequencies of Spike-specific CD4 and
CDS8 T cells and, in particular, high titers of nAbs against the B.1.1.7, B.1.351
[442] and the P.1 VOCs [443]. Heterologous ChAdOx1 followed by BNT162b2
induces moderate responses against alpha and delta, but poor responses against
beta and gamma VOC. When CoronaVac vaccinees were boosted with either
BNT162b2 or ChAdOx1 nCoV-19, increase in anti-S-RBD antibodies and surro-
gate neutralizing antibodies against the Delta variant was higher in BNT162b2
recipients than in ChAdOx1 nCoV-19 recipients.

third dose to immunosuppressed patients who do not mount protective response
after 2 doses: this approach benefits (both in nAb levels and Spike-reactive B and
CD4+ T lymphocytes) a fraction of solid organ transplant recipients who did not
respond to 2 doses of BNT162b2 (with the third dose being either homologous
or heterologous ChAdOx1) [495] or 2 doses of mRNA-1273 [496], or thoracic
cancer patients who did not respond to 2 doses of BNT162b2 [497]. Heterol-
ogous third dose with ChAdOx after 2 doses of BNT162b2 or mRNA-1273 to
nonresponders treated with rituximab induces levels similar to a third homologous
dose.

third dose to immunocompetent subjects to counteract decline in serological
response. With the evidence of waning immunity of the BNT162b2 vaccine, a
national third dose vaccination campaign was initiated in Israel during August
2021; other countries have announced their intention to administer a booster
shot as well. a third dose also boosts declining nAb titers in immunocompetent
patients, which neutralize most VOCs/VOIs. Patients with the higher response
rate to the third dose of vaccine can be identified by the presence of low anti-
RBD IgG titers and Spike-specific CD4+ T cells in their circulation 14 days after
the second dose. E.g., a third BNT162b2 dose restores the drop in viral load of
Delta which otherwise would vanish after 6 months from second dose. Since 12
days after the third dose of BNT162b2, an 11.4-fold decrease in the relative risk
of confirmed infection was seen, and a >10-fold decrease in the relative risk of
severe illness. Another study similarly found that 7—13 days after the third shot
there is a 48 —68% reduction in the odds of testing positive for SARS-CoV-2 infec-
tion and that 14—20 days after the booster the marginal effectiveness increases
to 70—84%. Although individuals fully vaccinated with Vaxzevria (AstraZeneca)
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have higher antibody levels than those with CoronaVac (Sinovac), heterologous
prime-boost with CoronaVac-Vaxzevria yielded comparable antibody levels to
two-dose Vaxzevria. On the reverse, participants who received the booster of
AZD1222 possessed higher levels of spike RBD-specific IgG, total immunoglob-
ulins, and anti-S1 IgA than that two-dose CoronaVac vaccines (p < 0.001) : they
also elicited higher neutralizing activity against the wild type and all variants
of concern than those in the recipients of the two-dose vaccines. Similarly, a
third dose of BBIBP-CorV boosted humoral and cellular responses, even in those
seronegatives after 2 doses.

e delivery routes: routes other than intramuscular lead to dose sparing, e.g., intra-
dermal administration of 10 and 20 wg mRNA-1273 vaccine was well tolerated
and safe, and resulted in a robust antibody response [444]. Current generation
of intramuscularly delivered vaccines induces poor IgA in mucosae, with levels
declining after the second dose after BNT162b2 or mRNA-1273 [445]. Since
sterilizing immunity is required to stop transmission and achieve herd immunity,
mucosal vaccines are being investigated. Accordingly, VOC delta viral loads are
the same in vaccinated and non-vaccinated cases [446]. While the in vitro findings
summarized here wait for confirmatory clinical evidences, in the meanwhile they
could orient therapeutic and preventive strategies.
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Selective Pressures Exerted e
by Antibody-Based Therapeutics

Evolutionary modeling suggests that SARS-CoV-2 strains harboring 1-2 deleterious
mutations naturally exist, and their frequency increases steeply under positive selec-
tion by mAbs and vaccines [447]. In 2% of COVID cases, viral variants with multiple
mutations, including in the Spike glycoprotein, can become the dominant strains in
as little as one month of persistent in-patient virus replication. This suggests the
continued local emergence of VOC independent of travel patterns [448].

While mutations can occur as a consequence of small chemicals (e.g., molnupi-
ravir [449]), it is reasonable that widespread deployment of nAb-based therapeutics
could accelerate Spike immune escape. As previously explained, DMS maps identify
mutants arising after treatment with REGN-COV?2: it is of interest that such escape
mutants already circulate [44].

In vitro, continuous passaging of SARS-CoV-2 in the presence of a CCP unit
with nAb titer > 1:10* led to AF140 at day 45, followed by E484K at day 73, and an
insertion in the NTD: these accumulating mutations led to complete immune escape
[450]. Accordingly, K417N, E484K and N501Y mutations were selected when pseu-
dotyped SARS-CoV-2 was cultured in the presence of vaccine-elicited mAbs [139].
In vivo, while intra-host SARS-CoV-2 mutation development is typically very low
[451], faster MR have been found in longitudinal studies of immunodeficient patients
who had persistent SARS-CoV-2 infections for several months and were treated with
nAb-based therapeutics:

e anti-Spike mAbs:
— REGN-CoV?2 cocktail:

Choi et al. reported a case having detectable SARS-CoV-2 for 154 days,
with accelerated viral evolution in the Spike protein after treatment with
remdesivir and the anti-Spike REGN-CoV2 mAb cocktail [452].

Hamster models and clinical trials showed no emergence of variants [138].
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AZD7442 (COV2-2130 and COV2-2196) cocktail was resistant to rapid escape
[453].
bamlanivimab monotherapy:

Truffot et al. reported emergence of E484K and Q493R after treatment with
bamlanivimab [202]

Lohr et al. reported rapid selection of immune escape variant carrying
E484K mutationinaB.1.1.7 infected and immunosuppressed patient treated
with bamlanivimab [454].

bamlanivimab + etesevimab cocktail:

Focosi et al. reported one immunocompromised patient with cholan-
giocarcinoma under steroids developing Q493R after treatment with
bamlanivimab-etesevimab who finally died [455].

Guigon et al. reported each one immunocompromised patient with
mycosis fungoides developing Q493R after treatment with bamlanivimab-
etesevimab who finally recovered [201].

Vellas et al. reported five immunocompromised patients: three of these
patients harbored variants with a Q493R (detected on day 7 in two patients
and on day 14 in the third). A Q493K mutation variant was detected in one
patient on day 7 post-treatment, and a E484K mutation variant was found
in another on day 21.

e CCP: Immune escape under CCP has not been reported very commonly nor fastly.
E.g., none out of eight recipients of hematopoietic stem cell transplants or chimeric
antigen receptor T lymphocytes treated with CCP and testing SARS-CoV-2 posi-
tive for 2 months showed significant mutations compared to the original strain
[456].

Avanzato et al. reported within-host genomic evolution in a patient affected by
chronic lymphocytic leukemia and iatrogenic hypogammaglobulinemia who
received CCP and shed infectious SARS-CoV-2 for 70 days [457].

Hensley et al. reported a CAR-T-cell recipient developed severe COVID-19,
intractable RNAemia and viral replication lasting > 2 months while receiving
remdesivir and low-titer non-neutralizing CCP (day 2 and 58) and developed
multiple variants [458].

Kemp et al. reported an immune suppressed individual who developed D796H
and AH69/AV70 mutations after each unsuccessful course of CCP. In vitro,
such mutant showed similar infectivity to wild type strain but resistance to
different CCP donors [459].

Truong et al. reported the emergence of seven major and three minor allele
variants (including A141-143, A145, A141-144, A211-212,N440K, V483A
and E484Q) in a patient with acute lymphoblastic leukemia who was treated
with weekly CCP and tested persistently positive for SARS-CoV-2 until day
144 [198].
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— Chen et al. documented the microevolution of SARS-CoV-2 recovered from
sequential tracheal aspirates from an immunosuppressed patient on tacrolimus,
steroids and CCP therapy and identify the emergence of multiple NTD and
RBD mutations associated with reduced antibody neutralization as early as
3 weeks after infection. Comparison of SARS-CoV-2 genomes from the first
swab (Day 0) and 3 tracheal aspirates (Day 7,21 and 27) identified five different
S protein mutations at the NTD or RBD regions from the second tracheal
aspirate sample (21 Day). The S:Q493R substitution and S:243-2441.A dele-
tion had ~ 70% frequency, while ORF1a:A138T, S:141-144LGVY deletion,
S:E484K and S:Q493K substitutions demonstrated ~ 30%, ~ 30%, ~ 20% and
~ 10% mutation frequency, respectively. However, the third tracheal aspirate
sample collected one week later (Day 27) was predominated by the haplo-
type of ORF1a:A138T, S:141-144LGVY deletion and S:E484K (> 95% muta-
tion frequency). Notably, S protein deletions (141-144LGVY and 243-244LA
deletions in NTD region) and substitutions (Q493K/R and E484K in the RBD
region) previously showed reduced susceptibly to mAb or CCP [460].

— Monrad et al. reported SARS-CoV-2-positive NPS persisting beyond 333 days
in an immunocompromised patient with B-CLL, asymptomatically carrying
infectious SARS-CoV-2 at day 197 post-diagnosis. In addition, viral
sequencing indicates major changes in the Spike protein over time, temporally
associated with CCP treatment, including H49Y, delY 144, delLLA241-243,
delAL243-244,1.242H, A243P, F490S, N1178N and C1250F [461].

— Khatamzas et al reported a follicular lymphoma patient treated with remdesivir
and CCP who developed L18F and R682Q.

In the absence of nAb-based therapeutics, immunosuppressive treatment has been

rarely associated with Spike mutations [456]:

Bazykin et al. reported emergence of Y453F and A69-70HV mutations (“the
AF combination”) (together with SS0L, A141-144, T470N and D737G) in a 47-
years old female with diffuse large B cell lymphoma treated with rituximab plus
chemotherapy (R-ICE regimen) [462].

Borges et al. reported another DLBCL patients with persistent infection for
6 months who developed four mutations (V3G, S50L, N87S and A222V) and
two deletions (A18-30 and A141-144) in Spike [463].

Truong et al. reported the emergence of escape mutations in two more patients with
acute lymphoblastic leukemia who were persistently positive for SARS-CoV-2
for up to 162 days [198].

Karim et al. reported evolution of E484K and N501Y mutations in a case of
prolonged infection of greater than 6 months with the shedding of high titter
SARS-CoV-2 in an individual with advanced HIV and antiretroviral treatment
failure [464].

Kavanagh Williamson et al. reported an hypogammaglobulinemic individual who
was persistently infected with SARS-CoV-2 for over 290 days, the longest persis-
tent infection recorded in the literature to date. During this time, nine samples
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of viral nucleic acid were obtained and analyzed by next-generation sequencing.
Initially, only a single mutation (L179I) was detected in the Spike protein rela-
tive to the prototypic SARS-CoV-2 Wuhan-Hu-1 isolate, with no further changes
identified at day 58. However, by day 155, the Spike protein had acquired a
further four amino acid changes, namely S255F, S477N, H655Y and D1620A,
and a two amino acid deletion (AH69/AV70). Infectious virus was cultured from
a nasopharyngeal sample taken on day 155, and NGS confirmed that the muta-
tions in the virus mirrored those identified by sequencing of the corresponding
swab sample. The isolated virus was susceptible to remdesivir in vitro; however,
a 17-day course of remdesivir started on day 213 had no effect on the viral RT-
PCR cycle threshold (Ct) value. On day 265, the patient was treated with the
combination of casirivimab and imdevimab. The patient experienced progressive
resolution of all symptoms over the next 8 weeks, and by day 311, the virus was
no longer detectable by RT-PCR [465].

e Mendes-Correa et al. reported a persistent SARS-CoV-2 infection of at least
218 days in a male who had undergone a prior autologous hematopoietic stem
cell transplant due to a diffuse large B cell lymphoma. He did not manifest
a humoral immune response to the virus. Whole-genome sequencing and viral
cultures confirmed a continual infection with a replication-positive virus that had
undergone genetic variation for at least 196 days following symptom onset [466].

e Sepulcri et al reported a NHL male patient treated with remdesivir and CCP who
developed H69Y-P1, V70G and S982A at day 238.

e Weigang et al reported a transplant recipient treated with remdesivir who
developed S131, T951, E484G, F490L, D141-144, D244-247, and D680-687.

e Jee et al reported intraclonal evolution in 18 B-cell non-Hodgkin lymphoma
patients, associated with impaired CD8+ T-cell counts.Remdesivir can adopt both
amino and imino tautomeric conformations to base-pair with RNA bases.

Both amino-remdesivir: G and imino-remdesivir: C pairs could be quite muta-
genic. Serial in vitro passages of SARS-CoV-2Engl?2 in cell culture media supple-
mented with remdesivir selected for drug-resistant viral populations. Remdesivir
triggers the selection of SARS-CoV-2 variant with a E802D mutation in the RdRp
sufficient to confer decreased sensitivity to remdesivir without affecting viral fitness.
Another mutation, [168T, was observed in the Nsp6. The analysis of more than
200,000 sequences also revealed the occurrence of 22 mutations in the spike,
including changes in amino acids E484 and N501 corresponding to mutations identi-
fied in alpha and beta. It has been hence been proposed than nAb-based therapeutics
could amplify mutations induced by remdesivir.



Chapter 11 ®)
Which Strain Will Finally Become oo
Dominant?

Abstract Vaccine campaigns are likely to affect viral evolution.

The answer lies in the respective vaccine efficacy (VE) against variants. Right now,
we have some insights from theoretical models accounting for transmissibility and
immune escape. Preliminary evidences suggest B.1.351 could be fitter than B.1.1.7
[467]. Yang et al. estimate that B.1.1.7 has a 46.6% increase in transmissibility
but nominal immune escape from protection induced by prior wild-type infection;
B.1.351 has a 32.4% increase in transmissibility and 61.3% immune escape; and P.1
has a 43.3% increase in transmissibility and 52.5% immune escape. Model simu-
lations indicate that B.1.351 and P.1 could supplant B.1.1.7 dominance and lead to
increased infections [468]. The same could be true for B.1.617.2 and B.1.1.318. In the
USA, the percentage of SARS-CoV-2 positive cases that are B.1.1.7 dropped from
70% in April 2021 to 42% in just 6 weeks: rapid growth rates of variants B.1.617.2
(0.61) and P.1 (0.22) was the primary drivers for this displacement, with B.1.617.2
growing faster in counties with a lower vaccination rate [469]. Preliminary modeling
by WHO based on sequences submitted to GISAID suggests that B.1.617 has a higher
growth rate than other circulating variants in India, suggesting potential increased
transmissibility [470, 471]: the same has been shown for B.1.617.2 over B.1.1.7 in
UK [472], with doubling time between 5—14 days [473]. The frequency of the delta
is expected to take over the alpha in Japan around July 12, 2021, at the time of the
Olympic games [474]. In the absence of vaccine, the main driver in the evolutionary
game is the efficacy of exposure from previous infection at preventing reinfection.
Beta virus showed moderate (7-fold) and delta slight escape from neutralizing immu-
nity elicited by ancestral virus infection. In contrast, delta virus had stronger escape
from beta elicited immunity (12-fold), and beta virus even stronger escape from delta
immunity (34-fold). The SARS-CoV-2 evolved within an HIV-1 patient had 9-fold
escape from ancestral immunity, 27-fold escape from delta immunity, but was effec-
tively neutralized by beta immunity. Beta and delta are serologically distant, further
than each is from ancestral [558]. Infectivity (tipically defined as the ratio between
infectious viral titer calculated with a focus forming assay and the mRNA copies of
several genes) is another driver. In a systematic review, out of 276 positive-culture of
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non-severe patients, 272 (98.55%) were negative 10 days after symptoms onset, while
PCR assays remained positive for up to 67 days. In severely ill or immunocompro-
mised patients positive-culture was obtained up to 32 days and out of 168 cultures, 31
(18.45%) stayed positive after day 10. In non-severe patients, in Ct value greater than
30 only 10.8% were still culture-positive while in Ct >35 it was nearly universally
negative. The minimal calculated number of viral genome copies in culture-positive
sample was 2.5 x 103 copies / mL. These findings were similar in immunocom-
promised patients. Recovering positive culture from non-respiratory samples was
sporadically obtained in stool or urine samples. Conversion of Ct values to viral
genome copies showed variability between different PCR assays and highlighted the
need to standardize reports to correctly compare results obtained in different labora-
tories. By aggregating VOC-associated and antibody-selected spike substitutions into
a single polymutant spike protein, Schmidt et al showed that 20 naturally occurring
mutations in SARS-CoV-2 Spike are sufficient to generate pseudotypes with near-
complete resistance to the polyclonal neutralizing antibodies generated by convales-
cents or mRINA vaccine recipients. Strikingly, however, plasma from individuals who
had been infected and subsequently received mRNA vaccination, neutralized pseudo-
types bearing this highly resistant SARS-CoV-2 polymutant spike, or diverse sarbe-
covirus spike proteins.In the absence of vaccine, the maindriver in the evolutionary
game is the efficacy of exposure from previous infection at preventing reinfection.
Beta virus showed moderate (7-fold) and delta slight escape from neutralizing immu-
nity elicited by ancestral virus infection. In contrast, delta virus had stronger escape
from beta elicited immunity (12-fold), and beta virus even stronger escape from
delta immunity (34-fold).The SARS-CoV-2 evolved within an HIV-1 patienthad 9-
fold escape from ancestral immunity, 27-fold escape from delta immunity, but was
effectively neutralized by beta immunity.Beta and delta are serologically distant,
further than each is from ancestral.

Infectivity (typically defined as the ratio between infectious viral titer calculated
with a focus forming assay and the mRNA copies of several genes) is another driver. In
a systematic review, out of 276 positive-culture of non-severe patients, 272 (98.55%)
were negative10days after symptoms onset, while PCR assays remained positive for
up to 67 days. In severely ill or immunocompromised patients positive-culture was
obtained up to 32 days and out of 168 cultures, 31 (18.45%) stayed positive after day
10. In non-severe patients, in Ct value greater than 30 only 10.8% were still culture-
positive while in Ct >35 it was nearly universally negative. The minimal calculated
number of viral genome copies in culture-positive sample was 2.5 x 103copies
/mL.These findings were similar in immunocompromised patients. Recovering posi-
tive culture from non-respiratory samples was sporadically obtained in stool or urine
samples. Conversion of Ct values to viral genome copies showed variability between
different PCR assays and highlighted the need to standardize reports to correctly
compare results obtained in different laboratories.

By aggregating VOC-associated and antibody-selected spike substitutions into a
single polymutant Spike protein, Schmidt et al. showed that 20 naturally occurring
mutations in SARS-CoV-2Spike are sufficient to generate pseudotypes with near-
complete resistance to the polyclonal nAbs generated by convalescents or mRNA
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vaccine recipients. Strikingly, however, plasma from individuals who had been
infected and subsequently received mRNA vaccination, neutralized pseudotypes
bearing this highly resistant SARS-CoV-2 polymutant Spike, or diverse sarbecovirus

spike proteins.



Chapter 12 ®)
Conclusions Creck for

Abstract Much uncertainty remains about the dynamics of viral evolution. Fast
development of vaccines and therapeutics will be required to counterfeat novel viral
variants.

Current SARS-CoV-2 diversity and MR (1-2 SNPs per month [475]) is far lower
than that seen for influenza viruses, but the pandemic is increasing genetic variation.
National lockdowns have created a landscape where in-country evolution can be
detected only after reopening of borders and travel to developed countries sequencing
a lot of positive samples.

Virtually all anti-SARS-CoV-2 CD8* T-cell responses should recognize the
recent variants [476], but antibody neutralization, the prerequisite for reaching herd
immunity, will likely be impaired. This is not unexpected for a coronavirus: For
example, the common cold coronavirus HCoV-229E evolved antigenic variants that
are comparatively resistant to the older sera [477].

It will be better to use vaccines targeting the faster spreading SARS-CoV-2 strain,
even when the initial prevalence of this variant is much lower [478]. Given the
reported reduced neutralization by vaccine-elicited antibodies against single to triple
K417N + E484K + N501Y mutants [139] and the dominating delta variant, vaccines
will need to be updated periodically to avoid potential loss of clinical efficacy, and
in this regard, mRNA vaccines are likely the easiest to be remanufactured.

mAD cocktails theoretically have the potential to minimize immune escape: While
escape occurs when combining mAbs targeting overlapping regions of Spike, this
does not happen when combining non-competing antibodies [479]. Nevertheless,
novel mutants rapidly appear after treatment with individual mAb, causing loss of
neutralization. Assuming that Spike affinity to ACE2 should be preserved in variants,
ACE2-Ig proteins could be an effective weapon against SARS-CoV-2 variants [184].

CCP is likely to remain the fastest deployable weapon against a clinically signif-
icant viral variant [480]: it has been formally proven that only a minority of CCP
samples lose all neutralizing activity in contrast to mAbs from five different epitope
clusters, where neutralization was completely abrogated by a single Spike mutation.
While only a minority of sera from hospitalized individuals lose more than threefold
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potency against any individual mutant, more than half of the mild/asymptomatic
serum samples showed a threefold drop in potency against at least one Spike mutant
[100]. While hyperimmune serum, monoclonal antibody and vaccine stockpiles could
suddenly become ineffective and require months for the update, CCP collections can
be immediately restarted and delivered an effective post-exposure prophylaxis and
treatment in early disease stages.
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